
Agilent Technologies N2216A

VXI/SCSI Interface Module

User’s Guide

Part Number N2216-90001

Printed in U.S.A.
Print Date: July 2000

© Copyright Agilent Technologies, 2000. All rights reserved.
8600 Soper Hill Road Everett, Washington 98205-1209 U.S.A.

2

Notices

The information contained in this manual is subject to change without notice. Agilent
Technologies makes no warranty of any kind with regard to this manual, including, but
not limited to, the implied warranties of merchantability and fitness for a particular
purpose. Agilent Technologies shall not be liable for errors contained herein or direct,
indirect, special, incidental, or consequential damages in connection with the furnishing,
performance, or use of the material.

Trademarks

WindowÇ, Windows NTÇ, and MS-DOSÇ�are U.S. registered trademarks of Microsoft
Corporation.

Netscape is a U.S. trademark of Netscape Communications Corporation.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause in DFARS 252.227- 7013.

Agilent Technologies, Inc.
395 Page Mill Road

Palo Alto, CA 94303-0870, USA

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR
52.227-19(c)(1,2).

Copyright � 2000 Agilent Technologies, Inc.

This document contains proprietary information which is protected by copyright.
All rights are reserved. No part of this document may be photocopied, reproduced,
or translated to another language without the prior written consent of Agilent
Technologies, Inc.

3

Safety Summary

The following general safety precautions must be observed during all phases of operation
of this instrument. Failure to comply with these precautions or with specific warnings
elsewhere in this manual violates safety standards of design, manufacture, and intended
use of the instrument. Agilent Technologies, Inc. assumes no liability for the customer’s
failure to comply with these requirements.

GENERAL

This product is a Safety Class 1 instrument (provided with a protective earth terminal).
The protective features of this product may be impaired if it is used in a manner not
specified in the operation instructions.

All Light Emitting Diodes (LEDs) used in this product are Class 1 LEDs as per
IEC 60825-1.

ENVIRONMENTAL CONDITIONS

This instrument is intended for indoor use in an installation category II, pollution degree 2
environment. It is designed to operate at a maximum relative humidity of 95% and at
altitudes of up to 2000 meters. Refer to the Technical Specifications document for the ac
mains voltage requirements and ambient operating temperature range.

BEFORE APPLYING POWER

Verify that the product is set to match the available line voltage, the correct fuse is
installed, and all safety precautions are taken. Note the instrument’s external markings
described under Safety Symbols.

GROUND THE INSTRUMENT

To minimize shock hazard, the instrument chassis and cover must be connected to an
electrical protective earth ground. The instrument must be connected to the ac power
mains through a grounded power cable, with the ground wire firmly connected to an
electrical ground (safety ground) at the power outlet. Any interruption of the protective
(grounding) conductor or disconnection of the protective earth terminal will cause a
potential shock hazard that could result in personal injury.

FUSES

Only fuses with the required rated current, voltage, and specified type (normal blow, time
delay, etc.) should be used. Do not use repaired fuses or short-circuited fuse holders. To
do so could cause a shock or fire hazard.

DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE

Do not operate the instrument in the presence of flammable gases or fumes.

4

DO NOT REMOVE THE INSTRUMENT COVER

Operating personnel must not remove instrument covers. Component replacement and
internal adjustments must be made only by qualified service personnel.

Instruments that appear damaged or defective should be made inoperative and secured
against unintended operation until they can be repaired by qualified service personnel.

WARNING The WARNING sign denotes a hazard. It calls attention to a procedure, practice,

or the like, which, if not correctly performed or adhered to, could result in

personal injury. Do not proceed beyond a WARNING sign until the indicated

conditions are fully understood and met.

Caution The CAUTION sign denotes a hazard. It calls attention to an operating procedure, or the
like, which, if not correctly performed or adhered to, could result in damage to or
destruction of part or all of the product. Do not proceed beyond a CAUTION sign until the
indicated conditions are fully understood and met.

5

Safety Symbols

Warning, risk of electric shock

Warning, hot surface

Caution, refer to accompanying documents

Alternating current

Both direct and alternating current

Three-phase alternating current

Earth (ground) terminal

Protective earth (ground) terminal

Frame or chassis terminal

Terminal is at earth potential.
Used for measurement and control circuits designed to be operated with one terminal
at earth potential.

Terminal for Neutral conductor on permanently installed equipment.

Terminal for Line conductor on permanently installed equipment.

Standby (supply). Units with this symbol are not completely disconnected from ac
mains when this switch is off.
To completely disconnect the unit from ac mains, either disconnect the power cord, or
have a qualified electrician install an external switch.

6

Agilent N2216A at a Glance

The Agilent N2216A VXI/SCSI Interface module is a high-speed dual SCSI interface with
optional internal disk drives. Option 1 adds a 50 Gbyte drive and option 2 adds two
50 Gbyte drives. The Agilent N2216A is compatible with software written for the
HP E1562. However, its SCSI electrical interface is not compatible with the HP E1562.

Caution Do not connect high-voltage differential (HVD) or fast-wide differential devices to the
module’s SCSI connectors. The Agilent N2216A contains low-voltage differential LVD
circuits that may be damaged if connected to HVD circuits.

VXI Mainframe

7

In This Book

This book documents the Agilent N2216A VXI/SCSI Interface module. It provides:

• Installation and service procedures (calibration not required)

• Operating information

• VXIplug&play command reference

• Sequence operations reference

• SCPI command reference

• LIF library reference

8

9

Agilent N2216A at a Glance .6

In This Book. .7

Installing the Agilent N2216A .17

Installing the Agilent N2216A .18
To inspect the Agilent N2216A .18
What You Get With the Agilent N2216A .19
To install the Agilent N2216A .20
To install the Agilent N2216A software. .23
To transport the module .25

To store the module .25

Troubleshooting the Agilent N2216A 27

Introduction .28
To troubleshoot the Agilent N2216A .29

Replacing Assemblies .31

Replaceable Parts. .32
To remove the top cover .38
To remove the printed circuit assemblies. .39
To remove a disk drive .41
To remove the fan .42
To remove the front panel. .43
To reprogram the Main assembly. .46

Hardware Description .47

General Description. .48
Circuit Description. .50
Agilent N2216A Front-panel Description .53

Contents

Contents

10

Using the Agilent N2216A. .55

VXI and SCPI. .56
The VXI Registers. .57
Throughput Terminology .58
The Agilent N2216A Throughput/Playback Process65

VXIplug&play Reference. .73

What is VXIplug&play .74
The VXIplug&play Soft Front Panel. .76
Using the Agilent N2216A VXIplug&play Library77

Recording from the VXI Local Bus .77
Playing back data from a throughput file .79

Function Reference .80
Alphabetical Function Reference .80
Hierarchical Function Reference .82
agn2216_close .84
agn2216_cmd. .85
agn2216_cmd_query_int32. .86
agn2216_cmd_query_real64. .87
agn2216_cmd_query_string .88
agn2216_error_message. .89
agn2216_error_query .90
agn2216_find .91
agn2216_find_default_volume. .92
agn2216_get_debuglevel .93
agn2216_get_dir_entry .94
agn2216_get_first_dir_entry .96
agn2216_get_timeout .98
agn2216_init. .99
agn2216_init_volume .101
agn2216_reset .102
agn2216_revision_query. .103
agn2216_self_test .104
agn2216_set_debuglevel. .106
agn2216_set_timeout .107
agn2216_tput_abort .108
agn2216_tput_bytes .109
agn2216_tput_finished .110
agn2216_tput_playback_read_aint16 .111
agn2216_tput_playback_read_aint32 .112

11

Contents

agn2216_tput_playback_read_aint32_16 113
agn2216_tput_playback_read_char .114
agn2216_tput_reset_localbus .115
agn2216_tput_setup_playback .116
agn2216_tput_setup_record .117
agn2216_tput_start_playback .118
agn2216_tput_start_record .119
agn2216_tputfile_close. .120
agn2216_tputfile_open_playback .121
agn2216_tputfile_open_record .122
agn2216_tputfile_open_update .123
agn2216_tputfile_read_aint16 .124
agn2216_tputfile_read_aint32 .125
agn2216_tputfile_read_areal64 .126
agn2216_tputfile_read_char .127
agn2216_tputfile_seek .128
agn2216_tputfile_write_aint16 .129
agn2216_tputfile_write_aint32 .130
agn2216_tputfile_write_areal64 .131
agn2216_tputfile_write_char .132

VXIplug&play Library Errors .133

Sequence Operations Reference 139

Sequence Overview .140
Sequence Quick Reference .143
Agilent N2216A Sequence Operations .148

Do Nothing. .148
Terminate Sequence .149
Pause N msec .150
TTLTRG Control .151
Execute New Sequence .152
New Sequence If Count .153
TTLTRG Arm .154
TTLTRG Wait. .155
IRQ Arm .156
IRQ Wait .157
Test shared RAM and Skip. .158
Pause N loops .159
Lbus Consume. .160
Lbus Eavesdrop .161

Contents

12

Lbus Consume Pipe .162
Lbus Eavesdrop Pipe .163
Lbus Consume Continuous .164
Lbus Eavesdrop Continuous .165
Lbus Consume Pipe Continuous. .166
Lbus Eavesdrop Pipe Continuous. .167
Lbus Generate .168
Lbus Append .169
Throughput A16 Buff 16 -
Throughput Shared RAM .170
Throughput Dummy Bytes. .171
Throughput Shared RAM Monitor Shared RAM -
Throughput A24 Buff D32 Monitor A24 Buff.172
Playback A16 Buff 16 -
Playback Shared RAM .173
Playback Bit Bucket .174
Lbus Consume Monitor Shared RAM -
Lbus Eavesdrop Pipe Monitor A24 .175
Wait Bit Set A16 -
Wait Bit Clear Shared RAM .177
Wait A16 Count16-
Wait Count Shared RAM 32 .178
Wait FIFO Empty
Wait FIFO Half Empty .179
Control A16 Reg 16-
Control Reg Shared RAM 32 .180
Dump A24 Seq Bytes-
Dump Shared RAM Seq Bytes .181

Programming using SCPI .183

Getting Started .184
Using the Status Registers .186
The Agilent N2216A Registers Sets .190
Addressing the Agilent N2216A .196

SCPI Command Reference .197

Message-based VXI devices .198
Finding the Right Command .199
Command Syntax .200

13

Contents

Agilent N2216A SCPI Quick Reference .202
Agilent N2216A SCPI Commands. .205

*CLS .205
*ESE .206
*ESR? .207
*IDN? .208
*OPC .209
 *RST. .210
*SRE .211
*STB? .212
*TST? .213
*WAI .214
DIAGnostic:BOARd:MAIN? .215
DIAGnostic:BOARd:SCSI? .216
DIAGnostic:LBUS:CONSume? .217
DIAGnostic:LBUS:GENerate? .218
DIAGnostic:SCSI:DAT? .219
DIAGnostic:SCSI:DEVices? .220
DIAGnostic:SCSI:DISK? .221
LBUS:READ:BUFFer .222
LBUS:WRITe:BUFFer. .223
MMEMory:SCSI[1|2|...|30]:BSIZe? .224
MMEMory:SCSI[1|2|...|30]:CALibrate:AUTO225
MMEMory:SCSI[1|2|...|30]:CALibrate[:IMMediate]227
MMEMory:SCSI[1|2|...|30]:CALibrate:TIME?228
MMEMory:SCSI[1|2|...|30]:CAPacity? .229
MMEMory:SCSI[1|2|...|30]:CLOSe .230
MMEMory:SCSI[1|2|...|30]:EBYPass [:STATe]231
MMEMory:SCSI[1|2|...|30]:ERASe .232
MMEMory:SCSI[1|2|...|30]:OPEN. .233
MMEMory:SCSI[1|2|...|30]:TEMPerature? 235
MMEMory:SESSion[1|2|...|12]:ADD. .236
MMEMory:SESSion[1|2|...|12]:COPY. .237
MMEMory:SESSion[1|2|...|12]:DELete:ALL238
MMEMory:SESSion[1|2|...|12]:READ:BUFFer239
MMEMory:SESSion[1|2|...|12]:READ:FIFO 240
MMEMory:SESSion[1|2|...|12]:SEEK. .241
MMEMory:SESSion[1|2|...|12]:SIZE?. .242
MMEMory:SESSion[1|2|...|12]:WRITe:BUFFer 243
MMEMory:SESSion[1|2|...|12]:WRITe:FIFO244
MMEMory:TUNit[1|2|...|15]:CLOSe .245

Contents

14

MMEMory:TUNit[1|2|...|15]:OPEN .246
SEQuence[1|2|3|4]:ADD .247
SEQuence[1|2|3|4]:BEGin. .248
SEQuence[1|2|3|4]:DELete:ALL. .249
SEQuence[1|2|3|4]:SIZE? .250
SEQuence[1|2|3|4]:TRANsferred? .251
STATus:OPERation:CONDition? .252
STATus:OPERation:ENABle .253
STATus:OPERation[:EVENt]? .254
STATus:OPERation:NTRansition .255
STATus:OPERation:PTRansition .256
STATus:PRESet. .257
STATus:QUEStionable:CONDition? .258
STATus:QUEStionable:ENABle .259
STATus:QUEStionable[:EVENt]? .260
STATus:QUEStionable:NTRansition .261
STATus:QUEStionable:PTRansition. .262
SYSTem:ABORt. .263
SYSTem:COMMunicate:SCSI[:SELF]:ADDRess264
SYSTem:ERRor? .265
 SYSTem:VERSion?. .266
VINStrument[:CONFigure]:LBUS
[:MODE] RESet|NORMal|PIPE .267
VINStrument:LBUS:RESet .268

Errors. .269

LIF Library Reference. .275

Getting Started .276
LIF Library Quick Reference. .278

Agilent N2216A LIF Functions .280
e1562_allocated. .280
e1562_available .281
e1562_block .282
e1562_copy .283
e1562_closeLibrary .284
e1562_defaultVolume .285
e1562_dirFirst .286
e1562_dirInit .287
e1562_dirNext .288
e1562_fclose .289

15

Contents

e1562_fflush. .290
e1562_fgetpos .291
e1562_fopen. .292
e1562_fread .293
e1562_fsetpos .294
e1562_fwrite .295
e1562_initializeLibrary .296
e1562_mapModule .297
e1562_pack .298
e1562_remove .299
e1562_rename .300
e1562_setEOF .301

Agilent N2216A LIF Commands .302
e1562cp. .303
e1562in .304
e1562ls .305
e1562mv .306
e1562pk .307
e1562rm .308

LIF Library Errors .309

Glossary .311

Index .317

Need Assistance?. .323

About this edition .324

Installing the Agilent N2216A

18

Installing the Agilent N2216A
Installing the Agilent N2216A

Installing the Agilent N2216A

This chapter contains instructions for installing the Agilent N2216A VXI/SCSI Interface
module and its libraries. This chapter also includes instructions for transporting and
storing the module.

To inspect the Agilent N2216A

The Agilent N2216A VXI/SCSI Interface module was carefully inspected both
mechanically and electrically before shipment. It should be free of marks or scratches,
and it should meet its published specifications upon receipt.

Note The Agilent N2216A does not require periodic calibration or performance testing.

If the module was damaged in transit, do the following:

• Save all packing materials.

• File a claim with the carrier.

• Call your Agilent Technologies sales and service office.

19

Installing the Agilent N2216A
What You Get With the Agilent N2216A

What You Get With the Agilent N2216A

The following items are included with your Agilent N2216A VXI/SCSI Interface module:

• One CD ROM containing VXIplug&play libraries, LIF libraries, sample programs, a pdf
file of this book, and online help (html files) for HP-UX 10.2, Windows 98, and
Windows NT 4.0. The html files require a web browser that supports the HTML v3.2,
JavaScript 1.2 and CSS1 standards, such as, Internet Explorer 4.0 or ���������4.0. In
addition, the web browser's cookie support should be turned on to receive the full
functionality of the online help.

• Two SCSI terminators (Agilent Technologies part number 1253-4010)

• Agilent N2216A User’s Guide (this book)

20

Installing the Agilent N2216A
To install the Agilent N2216A

To install the Agilent N2216A

If you will be using the HP/Agilent E1406A Command module and an external computer
with DOS based windows, use the HP/Agilent VXI Installation Consultant (VIC) to install
the Agilent N2216A module. VIC steps you through the installation procedure, then tests
the modules using the *TST? command. VIC may time out before the test is finished and
display a “timed out” message. If this occurs, exit VIC and send the *TST? command. For
instructions on sending the *TST? command, see “Troubleshooting the Agilent N2216A”
starting on page 27.

Caution To protect circuits from static discharge, observe anti-static techniques whenever
handling the Agilent N2216A VXI/SCSI Interface module.

1. Set up your VXI mainframe. See the installation guide for your mainframe.

2. Select two slots in the VXI mainframe for the Agilent N2216A module.

The Agilent N2216A module’s local bus receives ECL-level data from the module
immediately to its left and outputs ECL-level data to the module immediately to its
right. Every module using the local bus is keyed to prevent two modules from fitting
next to each other unless they are compatible. If you will be using the local bus, select
two slots immediately to the left of the data-receiving module.

3. Using a small screwdriver or similar tool, set the Logical address configuration switch
on the Agilent N2216A.

Each module in the system must have a unique logical address. The factory default
setting is 1001 0000 (144). If an HP/Agilent E1485 Signal Processor module will be
controlling the Agilent N2216A module, select an address within the E1485 module’s
servant area. If an GPIB command module will be controlling the Agilent N2216A
module, select an address that is a multiple of 8.

4. Using a small screwdriver or similar tool, set the Hardware configuration switches on
the Agilent N2216A.

The factory default setting is 1111 1100.

Note Controller Address switches CA1 and CA0 set the SCSI Controller Address. SCSI
Controller Address 7 (the factory default setting) identifies the SCSI Bus Master. If you
are using more than one Agilent N2216A on the same SCSI bus, set the Controller Address
switches for the second N2216A to Address 4, 5, or 6.

5. Using a small screwdriver or similar tool, set the Internal SCSI device address
switches on the Agilent N2216A.

The factory default setting is 0000 0000 (both disk drives at SCSI ID 0)

21

Installing the Agilent N2216A
To install the Agilent N2216A

22

Installing the Agilent N2216A
To install the Agilent N2216A

6. Set the mainframe’s power switch to standby.

7. Place the module’s card edges (top and bottom) into the module guides in the slot.

8. With the extractor levers in the out position, slide the module into the mainframe until
the module connects firmly with the backplane connectors. Make sure the module
slides in straight.

9. Attach the module’s front panel to the mainframe chassis using the module’s captive
mounting screws.

10.If you are not connecting to external SCSI disk or Dat drives, terminate the SCSI
connectors using the provided SCSI terminators.

11.If you are connecting to external SCSI disk or Dat drives, make sure they are low-
voltage differential devices (LVD) and that the end of the SCSI bus is terminated.

Caution Do not connect high-voltage differential (HVD) or fast-wide differential devices to the
module’s SCSI connectors. The Agilent N2216A contains LVD circuits that may be
damaged if connected to HVD circuits.

VXI Mainframe

Slotted
Captive Screws

Power
Switch

23

Installing the Agilent N2216A
To install the Agilent N2216A software

To install the Agilent N2216A software

The Agilent N2216A CD contains software for both MS Windows (Windows NT 4.0 and
Windows 98) and HP-UX 10.2.

Before installing the Agilent N2216A software, read the readme.txt file on the CD for
updated information. On a PC, use Wordpad to read this and other readme.txt files.

Note The Agilent N2216A is software compatible with the HP E1562. The Agilent N2216A
software does not need to be installed for applications currently using the HP E1562.

Installing the Agilent N2216A Software on Windows NT 4.0 or Windows 98

After installing the VISA library that comes with the VXI interface or the VXI embedded
computer, do the following:

1. Insert the Agilent N2216A CD-ROM into the computer’s CD-ROM drive.

2. Using Windows Explorer, select the CD-ROM drive.

3. Double-click the setup.exe file to begin the self-extracting installation program.

4. Follow the instructions on the screen to install the software.

The VXIplug&play library, the LIF library, include files, soft front panel application,
commands and other files are installed in the standard VXIplug&play directories in
C:\Vxipnp\WinNT (bin, include, msc\lib, agn2216) for a Windows NT 4.0
system.

For a standard installation, other files are installed in the following C:\Program
Files\Agilent\N2216\ sub-directories:

The source files are provided as examples for using the Agilent N2216A. The source
directories contain project files for use with Visual Studio 6.0, and makefiles for HP-UX.
For more information see the readme.txt in each directory.

help online help (html)

pnplib source for the N2216 VXIplug&play library

pnpexamc source for examples that use the N2216 VXIplug&play library

pnpsfp source for the soft front panel (Visual Basic 6)

examc source for diskdiag and other programs using VISA

e1562lif source for the LIF commands

e1562 source for programs using SICL written for the HP E1562

24

Installing the Agilent N2216A
To install the Agilent N2216A software

Installing the Agilent N2216A Software on HP-UX 10.2

After installing the VISA and/or SICL library that comes with the VXI interface or the VXI
embedded computer, do the following:

1. Log in as root.

2. Insert the Agilent N2216A CD-ROM into the computer’s CD-ROM drive.

3. Mount the CD-ROM file system. Use an appropriate modification of:
mount /dev/dsk/c201d2s0 /cdrom
where c201d2s0 is the system file for the CD-ROM drive and /cdrom is the directory
path of the root of the CD-ROM’s file structure. (These names may differ on your
system.)

4. Type:
/usr/sbin/swinstall -s /cdrom/n2216a.tap

The installation program will proceed to install the software.

The VXIplug&play library, the LIF library (VISA version), include files, commands and
other files are installed in the standard VXIplug&play directories in
/opt/vxipnp/hpux/ (bin, include and agn2216). The SICL versions of the LIF
library and LIF commands are installed in /opt/e1562/ (bin, include, lib).

Other files are installed in /opt/agn2216/ sub-directories as described above.

25

Installing the Agilent N2216A
To transport the module

To transport the module

• Package the module using the original factory packaging or packaging identical to the
factory packaging.

Containers and materials identical to those used in factory packaging are available
through Agilent Technologies offices.

• If returning the module to Agilent Technologies for service, attach a tag describing the
following:

• Type of service required

• Return address

• Model number

• Full serial number

In any correspondence, refer to the module by model number and full serial number.

• Mark the container FRAGILE to ensure careful handling.

• If necessary to package the module in a container other than original packaging,
observe the following (use of other packaging is not recommended):

• Wrap the module in heavy paper or anti-static plastic.

• Protect the front panel with cardboard.

• Use a double-wall carton made of at least 350-pound test material.

• Cushion the module to prevent damage.

Caution Do not use styrene pellets in any shape as packing material for the module. The pellets do
not adequately cushion the module and do not prevent the module from shifting in the
carton. In addition, the pellets create static electricity that can damage electronic
components.

To store the module

Store the module in a clean, dry, and static free environment.

For other requirements, see storage and transport restrictions in the Agilent N2216A

VXI/SCSI Interface Module Technical Specifications.

26

Installing the Agilent N2216A
To transport the module

Troubleshooting the Agilent N2216A

28

Troubleshooting the Agilent N2216A
Introduction

Introduction

The troubleshooting procedure in this chapter uses a program that automatically runs the
following commands from an MS-DOSÇ window:

• *IDN - identifies the module.

• *TST - checks the general operation of the Main assembly and SCSI assembly.

• DIAG:BOAR:MAIN - tests the Main assembly.

• DIAG:BOAR:SCSI - tests the SCSI assembly.

• DIAG:SCSI:DEV - checks the interface for a specific SCSI controller.

• DIAG:SCSI:DISK - checks the operation of a disk drive at the address specified.

For more information on these commands see “SCPI Command Reference” starting on
page 197.

29

Troubleshooting the Agilent N2216A
To troubleshoot the Agilent N2216A

To troubleshoot the Agilent N2216A

1. Type the following in an MS-DOS window then press enter:

diskdiag

2. A response similar to the following identifies the module:

diskdiag: running diagnostics for N2216 and E1562

Sending: *idn?
Received:
HEWLETT-PACKARD,N2216A (E1562E),US40200101,A.01.02

If the response is incorrect, use the resource manager to verify connection to the
module. The resource manager must be running before the test is started.

3. A response similar to the following indicates that the self test passed:

Sending: *tst?
Received:
+0

If the response is 1 through 11, the Main assembly is probably faulty.

If the response is 12 through 14, the SCSI assembly is probably faulty.

4. A response similar to the following indicates that the Main assembly test passed:

Sending: diag:boar:main?
Received:
"E1562 version ?2, logical address 144, bus request level 3
test_shared_ram: passed
Test magic shared ram read: passed
Test magic VXI a24 read: passed
Passed
"

If this test failed, the Main assembly is probably faulty. If you replace the Main
assembly you need to reprogram the module’s serial number and model number into
Flash ROM. See “To reprogram the Main assembly” on page 46.

5. A response similar to the following indicates that the SCSI assembly test passed:

Sending: diag:boar:scsi?
Received:
"Passed
"

If this test failed, the SCSI assembly is probably faulty.

30

Troubleshooting the Agilent N2216A
To troubleshoot the Agilent N2216A

6. A response similar to the following identifies the SCSI address of the device (in this
case 00) followed by the type of device (in this case a Seagate disk drive):

Sending: diag:scsi:dev? a
Received:
"00:SEAGATE ST150176LW-0002"

Sending: diag:scsi:dev? b
Received:
"00:SEAGATE ST150176LW-0002"

If either response is incorrect, the fuse on the SCSI assembly, the internal SCSI cable,
or SCSI device is probably faulty. Check fuses on the SCSI assembly (F600 and F650).
Swap the internal cables and retest. If the same connection fails, the disk drive is
probably faulty. If the other connection fails, the internal cable is probably faulty.

If both responses are incorrect, the Power Supply assembly is probably faulty.

7. For 2 optional disk drives�a response similar to the following indicates that the "A"
disk drive test passed:

Sending: diag:scsi:disk? a,0
Received:
"SCSI0 la00: device open -- blocksize=512 #blocks=97693755
SCSI0 la00: read serial number -- LQ2098310000102242TM
SCSI0 la00: read VPD page 81 -- unknown information
SCSI0 la00: read VPD page c0 -- 528000291679167000100010000000000000000000000000
SCSI0 la00: read VPD page c1 -- 21199052899
SCSI0 la00: read VPD page c2 -- unknown information
SCSI0 la00: read VPD page c3 -- unknown information
SCSI0 la00: read VPD page d1 -- unknown information
SCSI0 la00: read VPD page d2 -- unknown information
SCSI0 la00: Passed
"

If the test Failed, the disk drive assembly connected to the "A" connector is probably
faulty.

8. For 1 or 2 optional disk drives�a response similar to the following indicates that the
"B" disk drive test passed:

Sending: diag:scsi:disk? b,0
Received:
"SCSI1 la00: device open -- blocksize=512 #blocks=97693755
SCSI1 la00: read serial number -- LQ075951000010121KK4
SCSI1 la00: read VPD page 81 -- unknown information
SCSI1 la00: read VPD page c0 -- 528000291679167000100010000000000000000000000000
SCSI1 la00: read VPD page c1 -- 20799052899
SCSI1 la00: read VPD page c2 -- unknown information
SCSI1 la00: read VPD page c3 -- unknown information
SCSI1 la00: read VPD page d1 -- unknown information
SCSI1 la00: read VPD page d2 -- unknown information
SCSI1 la00: Passed
"

If the test Failed, the disk drive assembly connected to the "B" connector is probably
faulty.

Note For ordering and replacement procedures, see “Replacing Assemblies” starting on page
31.

The Agilent N2216A does not require calibration.

Replacing Assemblies

32

Replacing Assemblies
Replaceable Parts

Replaceable Parts

Replacement parts are listed in the following tables:

• Assemblies

• Front panel

• Cables

Ordering Information

To order Agilent parts, please contact your local Agilent Technologies Service Center.

Replaceable Parts Table

The replaceable parts table contains the following columns:

• Ref Des = The reference designator allows you to identify the part using the
illustration.

• Agilent Part Number = The part number assigned by Agilent to the part.

• Qty = Total quantity in instrument.

• Description = Description of the part.

• Mfg Code = A code number that identifies a manufacturer of the part. See “Code
Numbers” for the manufacturer’s name and address.

• Mfg Part Num = The part number assigned by the manufacturer to the part.

Caution The module is static sensitive. Use the appropriate precautions when removing, handling,
and installing to avoid unnecessary damage.

33

Replacing Assemblies
Replaceable Parts

Code Numbers

The following table provides the name and address for the manufacturers’ code numbers
(Mfr Code) listed in the replaceable parts tables.

Mfr No. Mfr Name Address

01125 Lewis Screw Co Chicago, IL 60609-3385 U.S.A.

01380 AMP Inc. Harrisburg, PA 17105-3608 U.S.A.

02022 Rogers Corp Rogers, CT 06263 U.S.A.

02121 Lyn-Tron Inc. Spokane, WA 99224 U.S.A.

03647 Instrument Specialties Co. Inc. Delaware Water Gap, PA 18327 U.S.A.

03934 E-A-R Corporation Indianapolis, IN 46268 U.S.A.

04420 Allmetal Screw Products Co Inc Deer Park, NY 11729 U.S.A.

04426 Barnes Group Inc Bristol, CT 06010 U.S.A.

04703 Littelfuse Inc Des Plaines, IL 60016 U.S.A.

04726 3M St Paul, MN 55101 U.S.A.

05313 Seastrom Mfg Co Inc Twin Falls, ID 83301 U.S.A.

05610 Textron Inc Providence, RI 02903 U.S.A.

06363 Oudensha America Inc Elk Grove Village. IL 60007 U.S.A.

06691 House of Metrics Ltd Afton, NY 13730 U.S.A.

07606 ITW / Medalist Glenview, IL 60007 U.S.A.

10035 Seagate Technology Inc Scotts Valley, CA 95066 U.S.A.

28480 Agilent Technologies Palo Alto, CA 94304 U.S.A.

34

Replacing Assemblies
Replaceable Parts

Assemblies: Agilent N2216

35

Replacing Assemblies
Replaceable Parts

Table 1 Assemblies

Note If you replace the Main assembly you need to reprogram the module’s serial number and
model number into Flash ROM. See “To reprogram the Main assembly” on page 46.

Early Agilent N2216A modules contain the N2216-66501 Main assembly. The Agilent
N2216-66511 Main assembly is the replacement assembly for the N2216-66501.

Ref
Des

Agilent Part
Number

Qty Description Mfr
Code

Mfr Part Number

A3 N2216-66503 1 PC-ASSY DISK POWER SUPPLY 28480 N2216-66503

A4 N2216-66505 1 PC-ASSY LED 28480 N2216-66505

A11 N2216-66511 1 PC-ASSY MAIN 28480 N2216-66511

A12 N2216-66512 1 PC-ASSY SCSI INTERFACE 28480 N2216-66512

A20 0950-3785 2 OPTIONAL 50 GB DISK DRIVE 10035 ST150176LW

MP002 N2216-00602 1 SHFT-MOD BASE N2216 28480 N2216-00602

MP003 N2216-00601 1 SHFT-MOD CVR N2216 28480 N2216-00601

MP004 N2216-00105 1 SHTF; MNTG PLATE 28480 N2216-00105

MP005 N2216-04101 1 SHTF; COVER REAR 28480 N2216-04101

MP007 E1562-00102 2 SHTF; FAN MNT PLATE 28480 E1562-00102

MP012 0515-1946 8 SCREW-MACH M3 X 0.5 6MM-LG 90-DEG-FLH-HD 01125 0515-1946

MP013 0515-0372 21 SCREW-MACHINE ASSEMBLY M3 X 0.5 8MM-LG 05610 0515-0372

MP014 E1562-68501 1 FAN 28480 E1562-68501

MP015 8160-0686 1 RFI STRIP-FINGERS BE-CU SN-PL 03647 786-185

MP016 0380-2070 3 STANDOFF-HEX 14-MM-LG M3.0 X 0.5-THD 02121 SS5172-14.0-01

MP017 3050-1161 2 WASHER-SHLDR NO. 4 .115-IN-ID .24-IN-OD 05313 5607-150

MP018 0515-0430 5 SCREW-MACHINE ASSEMBLY M3 X 0.5 6MM-LG 05610 0515-0430

MP020 0380-4355 2 STANDOFF-HEX 40-MM-LG M3 X 0.5-THD 02121 SS5171-40.0-01

MP021 0460-1790 5 DRIVE CUSHION 02022 4701-01-20125-
1604-1PSA

MP022 0380-4767 8 STANDOFF-HEX .250-IN-LG 6-32-THD 02121 SS6993-0.250-01

MP023 N2216-26001 8 SHLDR-SCREW 28480 N2216-26001

MP024 0400-0922 8 GROMMET-RND .158-IN-ID .057-IN-GRV-WD 03934 G-410-3

MP026 0515-0664 4 SCREW-MACHINE ASSEMBLY M3 X 0.5 12MM-LG 05610 0515-0664

MP027 0515-2733 4 SCREW-SPCL M2.5 X 0.45 17MM-LG PAN-HD 07606 0515-2733

MP028 0535-0031 2 NUT-HEX W/LKWR M3 X 0.5 2.4MM-THK 06691 0535-0031

MP029 0403-0285 2 BUMPER FOOT-ADH MTG 12.7-MM-WD 04726 SJ-5018 GRAY

A12F600 2110-0955 1 FUSE-SURFACE MOUNT 2A 125V NTD BI UL-LST 04703 R451 002

A12F650 2110-0955 1 FUSE-SURFACE MOUNT 2A 125V NTD BI UL-LST 04703 R451 002

36

Replacing Assemblies
Replaceable Parts

Front Panel

Table 2 Front Panel

MP201

MP207

MP209

MP210

MP212

MP208

MP213

MP211

MP205

MP206

MP211

Ref
Des

Agilent Part
Number

Qty Description Mfr
Code

Mfr Part
Number

MP201 N2216-00201 1 FRONT PANEL 28480 N2216-00201

MP205 E1400-45101 1 MOLD KIT-BTTM EXTR HDL “VXI” 28480 E1400-45101

MP206 E1400-45102 1 MOLD KIT-TOP EXTR HDL “Agilent” 28480 E1400-45102

MP207 1252-6155 4 SCREWLOCK FEMALE-SUBMIN D CONN 01380 786585-2

MP208 7121-7893 1 PLT-NAME,'SPARK' 06363 7121-7893

MP209 E1400-45008 2 MOLD BTTM-'VXI' 28480 E1400-45008

MP210 E1400-45011 2 MOLD TOP-'SPARK' 28480 E1400-45011

MP211 E1400-00610 2 SCR-ASM SHLDR 28480 E1400-00610

MP212 7121-7964 1 PLT-NAME VXI 'BU 28480 7121-7964

MP213 0515-2733 4 CAPTIVE SCREWS 28480 0515-2733

E1400-40104 2 L-BLOCK 28480 E1400-40104

0515-0664 4 SCREW-MACHINE ASSEMBLY M3 X 0.5 12MM-LG 01125 0515-0664

0535-0031 2 NUT-HEX W/LKWR M3 X 0.5 2.4MM-THK 06691 0535-0031

37

Replacing Assemblies
Replaceable Parts

Cables

Table 3 Cables

W4

W3

W1

W5

W6

Ref
Des

Agilent Part
Number

Qty Description Mfr
Code

Mfr Part
Number

W1 E1562-61601 2 CBL-SCSI 28480 E1562-61601

W3 E1562-61603 2 OPTIONAL CBL-ASM DSC DISK 28480 E1562-61603

W4 E1562-61604 1 CBL-AUX 28480 E1562-61604

W5 N2216-61605 1 CBL-CTRL BRD TO LED BRD 28480 N2216-61605

W6 E1562-61606 2 OPTIONAL CBL-ASM RBN DISK 28480 E1562-61606

38

Replacing Assemblies
To remove the top cover

To remove the top cover

1 Using a T-10 torx driver, remove the four screws along each side of the bottom cover.

2 Using a T-10 torx driver, remove the four screws along the top and the three screws along the

back of the top cover.

39

Replacing Assemblies
To remove the printed circuit assemblies

To remove the printed circuit assemblies

1 Remove top cover. Disconnect all cables from the printed circuit boards. Using a T-10 torx

driver, remove the three screws and the Disk Power Supply assembly.

2 Using a T-10 Torx driver, remove the three screws on the SCSI Interface assembly. Carefully, to

avoid stressing solder joints, pry the boards apart at the connectors and remove the assembly.

40

Replacing Assemblies
To remove the printed circuit assemblies

3 Using a T-10 torx driver, remove the three screws from rear and sides of bottom cover. Using a

6 mm nut driver, remove the three standoffs and the Main assembly.

4 Using a T-10 torx driver, remove the three screws and the rear cover from the Main assembly.

41

Replacing Assemblies
To remove a disk drive

To remove a disk drive

1 Remove top cover. Disconnect cables from the disk drive and move out of the way. While

supporting the disk drive (A or B), remove the four shoulder srews using a 5/16 inch nut driver. If
you are replacing the disk drive, remove the standoffs from the old disk drive and attach to the
new disk drive.

Note: If your nut driver does not fit through the access holes or you encounter other

difficulty, remove the disk drive mounting plate then remove the disk drive. See the following
steps.

1 Using a T-10 torx driver, remove the two

mounting plate screws.

2 From the back of the assembly lift up and

back to remove.

B

A

42

Replacing Assemblies
To remove the fan

To remove the fan

 1 Remove top cover. Disconnect the cable from the LED assembly and move out of the way.

Disconnect the fan cable.

2 Using a T-10 torx driver, remove two screws then lift off fan plate. Using a 4.5 mm nut driver,

remove the two standoffs then remove the fan and fan mounting plate.

43

Replacing Assemblies
To remove the front panel

To remove the front panel

1 Remove top cover. Using a T-8 torx driver, remove the two screws that attach the handles to

the assembly.

2 Using a thin flat-blade screwdriver, remove the screws that attach the connectors to the front

panel. Be careful to avoid scratching the front panel.

44

Replacing Assemblies
To remove the front panel

3 Using a T-10 torx driver, remove the screw that attaches the front panel to the bottom cover.

Lift the lower part of the front panel off of the tabs on the bottom cover and slide it away from the
module.

4 Using a T-10 torx driver, remove the two screws and the LED board from the front panel.

45

Replacing Assemblies
To remove the front panel

5 If you are replacing the front panel with another that does not have its own L-blocks, remove

the L-blocks from the old front panel and attach to the new front panel using a T-10 torx driver.
Because alignment is critical, be sure to note the positioning of the brackets. To access the
screws, remove the name plates by pushing a thin screwdriver through the slot on the back side of
the front panel.

46

Replacing Assemblies
To reprogram the Main assembly

To reprogram the Main assembly

If you replace the Main assembly you need to reprogram the module’s serial number and
model number into Flash ROM.

Using a Windows 98 or Windows NT 4.0 operating system

1. At an MS-DOS command prompt (C:\>), type the following replacing AAnnnnnnnn
with the module’s serial number then press enter:

diskcmd "DIAG:MNSN ""N2216A" "(E1562E)""","""AAnnnnnnnn"""

2. Wait two minutes for the command to process, then type the following:

diskcmd -r "DIAG:SNUMBER?"

3. Verify that the correct serial number was returned.

4. Type the following:

diskcmd -r "DIAG:MName?"

5. Verify that "N2216A (E1562E)" was returned.

Using an HP-UX 10.2 operating system

1. Using a K shell, type the following replacing AAnnnnnnnn with the module’s serial
number:

diskcmd "DIAG:MNSN \"N2216A (E1562E)\",\"AAnnnnnnnn\""

Note If you have a SICL only system, use diskcmd_s instead of diskcmd.

2. Wait two minutes for the command to process, then type the following:

diskcmd -r "DIAG:SNUMBER?"

3. Verify that the correct serial number was returned.

4. Type the following:

diskcmd -r "DIAG:MNAME?"

5. Verify that "N2216A (E1562E)" was returned.

Hardware Description

48

Hardware Description
General Description

General Description

The Agilent N2216A VXI/SCSI Interface module is a high-speed dual SCSI interface with
optional internal disk drives. Option 1 adds a 50 Gbyte drive and option 2 adds two
50 Gbyte drives. The Agilent N2216A is compatible with software written for the
HP E1562. However, its SCSI electrical interface is not compatible with the HP E1562.

Caution Do not connect high-voltage differential (HVD) or fast-wide differential devices to the
module’s SCSI connectors. The Agilent N2216A contains low-voltage differential LVD
circuits that may be damaged if connected to HVD circuits.

Figure 1 Agilent N2216A VXI/SCSI Interface Module

VXI Mainframe

49

Hardware Description
General Description

The Agilent N2216A occupies two slots in a C-size VXI mainframe and does not require
calibration.

The Agilent N2216A can be used for local bus disk throughput from input modules such as
the HP/Agilent E1432A 16-channel Digitizer and the HP/Agilent E1430A Digitizer.

The Agilent N2216A can also be used for throughput from high channel count applications
using the HP/Agilent E1413C 64-channel Input, which does not have a local bus interface.
In this case, the Agilent N2216A orchestrates high-speed throughput transfers without the
interaction of a controller. For high-speed applications, the Agilent N2216A Option 2
(with two internal disk drives) is required.

In Static+Dynamic applications, the Agilent N2216A can store data from both local-bus-
based modules and non-local-bus-based modules simultaneously.

The cache size for the optional disks in the Agilent N2216A is 1 MByte.

The Local Bus is a flexible daisy-chain structure connecting the modules of a VXI system.
It is 12 lines wide in each direction through the P2 connector and an additional 24 lines
wide though the P1 connector.

50

Hardware Description
Circuit Description

Circuit Description

A block diagram for the Agilent N2216A is shown below.

Figure 2 Block diagram of the Agilent N2216A

51

Hardware Description
Circuit Description

The following is a simplified block diagram of the Agilent N2216A.

Figure 3 Block diagram of the Agilent N2216A

The following is a simplified block diagram of the Agilent N2216A option 1. Option 1 adds
a 50 Gbyte disk drive to channel B in the standard Agilent N2216A.

Figure 4 Block diagram of the Agilent N2216A option 1

External
Low Voltage
differential
SCSI-2

External
Low Voltage
differential
SCSI-2

LVD/SE Active Termination

LVD/SE Active Termination

50

LVD/SE Active Termination

LVD/SE Active Termination

External
Low Voltage
differential
SCSI-2

External
Low Voltage
differential
SCSI-2

1MB cache

52

Hardware Description
Circuit Description

The following is a simplified block diagram of the Agilent N2216A option 2. Option 2 adds
two 50 Gbyte disk drives to the standard Agilent N2216A.

Figure 5 Block diagram of the Agilent N2216A option 2

50

50

LVD/SE Active Termination

External
Low Voltage
differential
SCSI-2

External
Low Voltage
differential
SCSI-2

LVD/SE Active Termination

1MB cache

1MB cache

53

Hardware Description
Agilent N2216A Front-panel Description

Agilent N2216A Front-panel Description

Status LEDs

• Failed

• Access

• Disk A (only lit during disk access on Agilent N2216A’s with option 2)

• Disk B (only lit during disk access on Agilent N2216A’s with option 1 or 2)

The Disk LED lights when the corresponding disk is in use.

SCSI connectors

The Agilent N2216A has two multi-mode�low voltage differential (LVD) and single
ended (SE)�SCSI connectors (SCSI A and SCSI B). The Agilent N2216A uses both
interfaces to increase the overall transfer rate.

Figure 6 Agilent N2216A

1����$

54

Hardware Description
Agilent N2216A Front-panel Description

Using the Agilent N2216A

56

Using the Agilent N2216A
VXI and SCPI

VXI and SCPI

Message-based VXI devices

The Agilent N2216A is a message-based VXI module. A message-based device is typically
the most intelligent device of a VXIbus system. High performance instruments are
typically available as message-based devices. Besides the basic configuration registers
supported by the register-based devices, the message-based device has common
communication elements and a Word Serial Protocol to allow ASCII-level communication
with other message-based modules. This allows easier multi-manufacturer support,
though at some sacrifice in speed to interpret the ASCII messages. Since the Word Serial
Protocol mandates only a byte transfer per transition, which then must be interpreted by
the onboard micro-processor, message-based devices are typically limited to IEEE-488
speeds.

SCPI

In the past, system instruments spoke many different languages. This caused test system
developers to spend valuable time learning instrument control languages. Test programs
written using these languages were hard to modify, and the substitution of one instrument
with another was nearly impossible.

There was obviously a need for standardization of instrument languages. To fill that need,
Agilent took the lead in the definition and delivery of SCPI. SCPI (Standard Commands
for Programmable Instruments) is a closely defined, but broadly accepted, standard
instrument command language. SCPI has the advantage that test programmers need to
learn only one language. Also, test programs written in SCPI can be easily understood
and easily modified, and test systems can be easily upgraded.

57

Using the Agilent N2216A
The VXI Registers

The VXI Registers

The Agilent N2216A is a message-based VXI device and cannot be programmed by way of
registers like a register-based device. However, it does use the following VXI registers:

• Offset Register

• Status/Control Register

• Device Type Register

• ID/Logical Address Register

• Data Low Register

• Response/Data Extended Register

• Protocol/Signal Register

These registers are common to many VXI devices. Refer to VXI documentation for more
information.

58

Using the Agilent N2216A
Throughput Terminology

Throughput Terminology

SCPI Commands

The following is an overview of the some of the capabilities of the Agilent N2216A that are
controlled by SCPI commands. See “Programming using SCPI” starting on page 183 and
“SCPI Command Reference” starting on page 197 for details.

One group of commands begins with the command MMEMory. These are all commands
that refer to mass storage capabilities. They are Agilent N2216A defined commands and
not part of the SCPI standard.

The process by which the Agilent N2216A transfers data can be organized as shown in the
following illustrations. Data for the individual devices is organized into Transfer Units
(TUNITs) and Sessions that are controlled by Sequences. The following sections explain
more about these terms.

Individual SCSI Devices

The Agilent N2216A provides two SCSI buses with a controller on each bus. The
controller’s SCSI logical address is set by switches to SCSI address 4, 5, 6, or 7, but may be
changed via the SYST:COMM:SCSI:SELF:ADDR command in case of an address conflict.

The MMEMory:SCSI subsystem provides a means of initializing and controlling a single
SCSI device. Special configurations are set up using this subsystem. Higher level data
Transfer Units are built using this lowest level entity — an individual device.

 The subsystem that refers to devices is MMEMory:SCSI[1|2|...|30]. These are commands
that refer to individual devices on a SCSI bus.

All commands in this subsystem refer to a single device. Commands are provided to open
and close these devices as well as configure special aspects of these devices. Data reads
and writes are not done using the MMEMory:SCSI commands. See the MMEMory:TUNit
and MMEMory:SESSion commands for further explanation about how to completely
configure the SCSI system on an Agilent N2216A.

The MMEMory:SCSIx:* commands do not refer to a specific SCSI device depending upon
the value of x. Instead the SCSI controller, logical address and logical unit are specified in
the MMEMory:SCSIx:OPEN command. The letter x just provides a convenient means to
refer to one of several open SCSI devices.

See “SCPI Command Reference” starting on page 197 for more information.

59

Using the Agilent N2216A
Throughput Terminology

Figure 7 An example of SCSI devices, Sessions, and TUNITs

Figure 8 An example of SCSI devices, Sessions, and TUNITs

Figure 9 An example of SCSI devices, Sessions, and TUNITs

60

Using the Agilent N2216A
Throughput Terminology

Transfer Unit (TUNIT)

A Transfer Unit can refer to data from either one or two devices.

The subsystem that refers to Transfer Units is MMEMory:TUNit[1|2|...|15]. These are
commands that refer to a simultaneous data transfer.

Since the Agilent N2216A provides a pair of SCSI buses and may contain two internal
devices, a means is provided to send data to this pair of devices (one on each controller).
The MMEMory:TUNIT subsystem informs the Agilent N2216A whether it will be
transferring data from just a single device, or a pair of devices. When data is sent to a pair
of devices, the throughput rate is twice that of a single device, but the data is “split”
between the devices — two bytes to one device and two bytes to the other device.
Special internal hardware makes it possible for these four bytes to be transferred at the
same time for the highest possible throughput rate. In order to transfer data to/from a
pair of devices, it is necessary for the SCSI blocksize to be the same for the two devices.

This subsystem refers to a continuous sequential stream of data. The name “TUNIT”
means Transfer UNIT. This data may be transferring to/from a single SCSI device. Or for
the Agilent N2216A, a TUNIT may refer to data that is split across devices in such a way as
to make the upper 16 bits of a 32 bit quantity go to one device and the lower 16 bits of the
quantity go to another device. This type of data split requires that the two devices be on
different SCSI controllers. This subsystem does not refer to data that is split in terms of
blocks such that N logical blocks reside on device 1 and N blocks reside on device 2 or
some more complicated scheme. See the MMEMory:SESSion commands for data that is
split in this manner.

This subsystem was introduced to describe data split across the two SCSI controllers
supported by the Agilent N2216A. It is also a core element in creating a Session (see the
MMEMory:SESSion subsystem).

See “SCPI Command Reference” starting on page 197 for more information.

Sessions and Striping

A Session provides the ability to combine one or more Transfer Units together into one
logical data repository.

The subsystem that refers to Sessions is MMEMory:SESSion[1|2|3|4]. These are
commands that refer to a complete repository of data.

The reason for using more than one Transfer Unit is to use more of the overall SCSI
bandwidth by writing enough data to one (pair of) disk to fill up its cache, then switching
to another (pair of) disk while the first one writes its data to its media. In this manner,
several disks can be supported on each SCSI bus which increases the overall SCSI
throughput. The MMEMory:SESSion subsystem is the main point of interaction when
reading and writing data — it makes the number of disks involved in the data transfer
transparent.

This subsystem describes how data is divided between one or more Transfer Units.
Sessions using multiple Transfer Units will contain data that has N blocks on Transfer
Unit 1, M blocks on Transfer Unit 2, and so on. This is called disk striping. Where a
TUNIT describes a width-wise split, a Session describes a length-wise split. Sessions are
useful in very high speed throughputs as a means of keeping several slower devices busy
at the same time. For instance, the wide SCSI bus has a maximum data transfer rate of 20
Mbytes per second. However, most disks have a maximum continuous transfer rate to

61

Using the Agilent N2216A
Throughput Terminology

media of ~15 Mbytes per second. It is easy to see that by using the cache on the disk, data
split across several disks could attain a higher overall throughput than data written to a
single disk.

Disk striping can also be used to optimize disk storage. For an example, see Figure 10.
Using only one pair of SCSI devices would allow 100 Gbytes of storage. Striping allows
the data to be spread across two pairs of devices for a total of 200 Gbytes.

In most cases, throughputs and playbacks require both a Sequence and a Session. A
Session is required for all reads and writes including throughputs and playbacks.
However, a simple throughput from a single non-LBUS device or a non-LBUS playback
can be done without a Sequence.

During a throughput Sequence using multiple Transfer Units, each Transfer Unit will have
a specified number of logical blocks written to it before switching to the next Transfer
Unit in the Session. When the last Transfer Unit in the Session has completed its set of
logical blocks, the first Transfer Unit is again accessed.

There are some constraints upon Sessions that are difficult to describe in the individual
command descriptions. The first constraint is that every Transfer Unit in a Session must
have the same number of SCSI devices in it. The second constraint is that if each Transfer
Unit is made up of only a single device, each device must be on the same SCSI controller.
An error will be returned from the MMEMory:SESSion:ADD command if these constraints
are not followed.

It is also important to know the cache size of the disks the data is being written to. For
the optional disks in the Agilent N2216A, the cache size is 1 Mbyte. This means that the
parameter <Count> in the MMEMory:SESSion:ADD command should be no more than
2048 blocks. A count larger than this would require that the disk be read more often and
slow down the data transfer.

See “SCPI Command Reference” starting on page 197 for more information.

Figure 10 Example of disk striping - schematic view

These two disks can be
any external SCSI disks

CA bits = 11 CA bits = 11

SCSI-A

SCSI-B

ID=0

ID=0

ID=0

ID=0

62

Using the Agilent N2216A
Throughput Terminology

Figure 11 Example of disk striping - view representing modules in mainframe

63

Using the Agilent N2216A
Throughput Terminology

Sequence

A Sequence specifies the order of operations for a throughput or playback Session.

The subsystem that refers to Sequences is SEQuence[1|2|3|4]. These are commands that
provide a means to specify a complex throughput or playback.

The SEQuence subsystem is used to specify the order of operations for a throughput or
playback Session. This list of operations may contain data transfer requests from both
the local bus and the VME bus in throughput Sequences, but may contain only VME or
LBUS data transfers upon playback. Synchronization and control operations are provided
for both throughput and playback.

The fields contained in every element of the Sequence list are: operation, count, address,
and miscellaneous. The operation field specifies the action to be done: data transfer,
synchronization, or control. The count field is used by many operations to indicate how
many operation units will be transferred. The unit of count is sometimes bytes and
sometimes blocks — see the description of the operation to determine which. The
address field is used by operations that do VME data transfers. The value of address is an
offset from the beginning of one of the address spaces. The miscellaneous field has
various meanings depending upon the operation. Not every operation uses all fields, but
every Sequence element contains all four fields. Fields that are not used should be set to
zero.

A Session must be initialized before starting a Sequence. See the MMEMory:SESSion
subsystem.

The behavior of a Sequence is undefined if a throughput operation is requested in a
playback Sequence or vice versa. It is also undefined if an LBUS playback operation is
included in a VME playback Sequence.

SEQuence is not a SCPI supported subsystem.

The Sequence operations that are labeled as utility, may be used in either playback or
throughput Sequences. They are intended to help provide synchronization between the
Sequence and the devices that are generating/receiving the data.

See “Sequence Operations Reference” starting on page 139 for details on using Sequence
commands.

Operation Status Register

The subsystem that refers to the operation status register is STATus:OPERation. These
are commands that provide the necessary commands to interface with the operation
register.

For more information about the operation status register and other status registers, see
“Programming using SCPI” starting on page 183.

LIF Directories and Files

This diagram represents the way files are laid out on a disk using the LIF format (Logical
Interchange Format). The first field, the volume label, references the directory that
follows. The directory contains a number of entries each of which references one of the
user files, which are on the remainder of the disk.

For more information about LIF functions see “LIF Library Reference” starting on page
275.

64

Using the Agilent N2216A
Throughput Terminology

Figure 12 Logical Interchange Format (LIF) - media layout

Address Space

The VXI system architecture defines three types of address space. A16 space consists of
64 Kbytes, A24 is 16 Mbytes, and A32 is 4 Gbytes.

The Agilent N2216A has access to A16, A24, and A32 space through a 16-bit port. Or, if
devices support it, it can also use a 32-bit port using D32. The type of VME cycle
performed depends on the type of processor cycle (2 cycles for 16-bit or 1 cycle for 32-
bit).

Shared Memory

Shared memory provides a way for the Agilent N2216A to transfer data to a controller.
The shared memory in the Agilent N2216A is mapped to the A24 VXI address space. The
controller can then access that same address space to receive or write data. Note that if
SCPI commands or Sequences refer to shared memory in the Agilent N2216A, the
addresses begin at zero. However if they refer to shared memory in the A24 space, they
may begin at a different value, depending on how the A24 memory has been allocated
among devices.

TTLTRG

TTLTRG consist of eight lines on the VXI backplane on connector P2. They are available
to provide synchronization between devices. The Agilent N2216A can use the TTLTRG
lines for simple communication with other devices. For example, it can wait for a line to
go high before taking an action, or it can assert a line as a signal to another device.

65

Using the Agilent N2216A
The Agilent N2216A Throughput/Playback Process

The Agilent N2216A Throughput/Playback Process

Acquisition

Local Bus

The following illustration shows the Agilent N2216A acquiring 24 channels of dynamic
data over the local bus. Each HP/Agilent E1433B module takes in eight channels of data
and sends it to the Agilent N2216A over the local bus. In this example, the Agilent N2216A
option 2 places the data in its two disk drives.

Figure 13 Data acquisition using the local bus

System Bus

The following illustration shows the Agilent N2216A acquiring data over the System Bus.

Figure 14 Data acquisition using the VXI system bus

66

Using the Agilent N2216A
The Agilent N2216A Throughput/Playback Process

Mixed System Bus and Local Bus

In the following illustration, the Agilent N2216A combines the data from the two busses
prior to storing it on the disk.

Figure 15 Data acquisition using the VXI system bus and the local bus

Monitoring the Local Bus during Throughput

In the following illustration, the Agilent N2216A copies a subset of the channels from the
local bus to the system bus. The data is then monitored over the system bus by a
controller.

Figure 16 Monitoring during local bus throughput

67

Using the Agilent N2216A
The Agilent N2216A Throughput/Playback Process

Monitoring the System Bus during Throughput (using CVT)

In the following illustration, the HP/Agilent E1413C FIFO is accessed for real-time
acquisition of all data to the Agilent N2216A data disk. The HP/Agilent E1413C Current
Value Table (CVT) is monitored by the controller. The Agilent N2216A cannot provide
data to be monitored.

Monitoring by way of the Current Value Table allows higher bandwidth compared to
monitoring the local bus. A disadvantage is that some samples may be missed, but for
many applications this is not be a problem.

Figure 17 Monitoring during system bus throughput (using CVT)

Monitoring the System Bus during Throughput (via the Agilent N2216A)

In the following illustration, all data input by the Agilent N2216A is “reflected” back out by
way of the System Bus for monitoring purposes. The destination for the data could be
controller-shared memory.

Figure 18 Monitoring during system bus throughput (via the Agilent N2216A)

68

Using the Agilent N2216A
The Agilent N2216A Throughput/Playback Process

Data flow

The following illustration shows the data flow in a system using the Agilent N2216A. This
system is set up using eight HP/Agilent E1413C scanning A/D (Analog-to-Digital)
Converter modules to acquire input and send it to an Agilent N2216A.

Figure 19 Data flow

Throughput Directly to an External Digital Recorder

In the following illustration, data from the four HP/Agilent E1433B modules is input to the
Agilent N2216A. The Agilent N2216A then outputs the data from its SCSI A connector to
an external SCSI device.

Figure 20 Throughput Directly to an External Digital Recorder (using the Agilent N2216A)

69

Using the Agilent N2216A
The Agilent N2216A Throughput/Playback Process

Post-processing

In post-processing we can use a Sequence to unwind the data from the disk in the same
order as the corresponding acquisition Sequence.

Post-processing using the HP/Agilent E1485C VXI Signal Processor

In the following illustration, the HP/Agilent E1485C VXI Signal Processor reads data from
the Agilent N2216A using the local bus.

Figure 21 Data post-processing using the HP/Agilent E1485C

Post-processing using an embedded host

The data can be transferred in several ways. The controller can read the data from the
Agilent N2216A disks via shared memory, or directly via SCPI commands. Or, the Agilent
N2216A can place the data directly into the controller’s shared memory. The following
illustration shows the controller transferring the data into its own local memory.

Shared memory is memory space in the controller and in the Agilent N2216A that can be
accessed by both modules.

Figure 22 Data post-processing using an embedded host controller

70

Using the Agilent N2216A
The Agilent N2216A Throughput/Playback Process

Pre-processing using the HP/Agilent E1485C VXI Signal Processor

The following illustration shows the HP/Agilent E1485C VXI Signal Processor acting as a
pre-processor for data on the local bus that is destined for the Agilent N2216A data disk.

Figure 23 Data pre-processing using the HP/Agilent E1485C

Backup

Backup via Local Bus and post-processing

The following illustration shows data sent up to the host controller after first passing
through the HP/Agilent E1485C VXI Signal Processor for preliminary processing.

The archive shown in the diagram can be a disk.

Figure 24 Backup via local bus and post-processing

71

Using the Agilent N2216A
The Agilent N2216A Throughput/Playback Process

Backup via System Bus (VME)

The following illustration shows a throughput Session directly backed up to the host
controller. This is the same as the data post-processing using an embedded host
controller, previously described.

From the controller, the data can be archived to disk.

Figure 25 Backup via system bus

Backup to external DAT

The following illustration shows a throughput Session that has been saved on the disk
drive backed up to an external digital audio tape (DAT).

The SCPI command used for backup is MMEMory:SESSion:COPY. See “SCPI Command
Reference” starting on page 197 for more information.

Figure 26 Backup disk file to external DAT

72

Using the Agilent N2216A
The Agilent N2216A Throughput/Playback Process

Backup to Host via SCSI

The following illustration shows copying a throughput Session to the host controller via
SCSI. If the throughput Session has been formatted with LIF and exists on a single SCSI
device, then that device may be mounted under HP-UX and the file copied out under
control of the host computer.

For this type of backup, the host must have a LVD (low voltage differential) or SE (low
voltage single ended) SCSI interface and that data must be sent to a LIF file.

Figure 27 Backup to host via SCSI

Copying a Split Session to One Disk File

You can copy a split Session (a TUNIT split between two SCSI disk drives) to a Session on
a single disk.

In the following illustration, data from the two disks of an Agilent N2216A option 2 is
placed on one of the disks. An alternative is to send the combined data to an external
disk, which could then be used as a backup file for the Session.

Figure 28 Copying a split Session

VXIplug&play Reference

74

VXIplug&play Reference

What is VXIplug&play

Agilent Technologies uses VXIplug&play technology in the Agilent N2216A. This section
outlines some of the details of VXIplug&play technology.

Overview

The fundamental idea behind VXIplug&play is to provide VXI users with a level of
standardization across different vendors well beyond what the VXI standard
specifications spell out. The VXIplug&play Alliance specifies a set of core technologies
centered on a standard instrument driver technology.

Agilent offers VXIplug&play drivers for VEE-Windows. The VXIplug&play instrument
drivers exist relative to so-called "frameworks." A framework defines the environment in
which a VXIplug&play driver can operate. The Agilent N2216A has VXIplug&play drivers
for the following frameworks: Windows 98, Windows NT, and HP-UX.

VXIplug&play drivers

The Agilent N2216A VXIplug&play driver is based on the following architecture:

It is most useful to discuss this architecture from the bottom up. The VISA/VTL I/O
interface allows interoperability of the VXIplug&play driver technology across interfaces.

�������������������������������	
�
��
�
��������������������	��������������	����

�������������	���
��	�� �������������

�����	

	����!�"������#�
�������$�����	���%���	�&

��������$�����
����!��"��
��!%%���'�������%$(������������

��)�%*)$+,
$*-�$�����	��

75

VXIplug&play Reference

The actual instrument driver is a DLL (Dynamic Linked Library) created from:

• A set of source (.C) files.

• A set of header (.H) files, used for compiling the file as well as to describe the driver’s
calls to any program using the driver.

• A standard driver library (.LIB) file, to provide the standard functionality all the
drivers would require.

This DLL is a set of calls to perform instrument actions�at heart, that’s all a
VXIplug&play driver is�a library of instrument calls.

This driver is accessed by Windows applications programs written in languages such as
VEE or NI LabView.

HTM help files are included to provide descriptive information for the functions in the
VXIplug&play DLL. The HTM help files require a web browser that supports the HTML
v3.2, JavaScript 1.2 and CSS1 standards.

76

VXIplug&play Reference
The VXIplug&play Soft Front Panel

The VXIplug&play Soft Front Panel

If you are running the Agilent N2216A software in Microsoft Windows 98 or Windows NT,
you can use the Soft Front Panel (SFP) program to interface with the Agilent N2216A.

The Agilent N2216A Soft Front Panel allows you to check that your Agilent N2216A is
installed correctly. You can also use it to format, list contents, determine version, and test
the Agilent N2216A. However, it is not a throughput data viewer or throughput session
controller. It cannot be controlled from a program and it does not access all of the Agilent
N2216A’s functionality.

Getting Updates

You can download the latest instrument drivers via Agilent’s Test and Measurement
Technical Support web site.

77

VXIplug&play Reference
Using the Agilent N2216A VXIplug&play Library

Using the Agilent N2216A VXIplug&play Library

The Agilent N2216A VXIplug&play library simplifies the programming required to record
and playback data with the Agilent N2216A. This section is a programming overview. For
more details on function usage and parameters see the examples programs. The location
of the example programs is listed in the readme file. For specific usage information see
the Function Reference (page 80) and Agilent N2216A LIF Commands (page 302)
sections.

Recording from the VXI Local Bus

Format the Agilent N2216A

Before using the N2216 for data recording, format each disk as a LIF volume. You can
format a disk using the Agilent N2216A Soft Front Panel (agn2216.exe on a PC) or typing
the LIF command e1562in from the command line (MS-DOS and HP-UX).

Programming steps for recording data

1. Initialize the data source and configure as needed.

2. Call agn2216_init() to initialize the N2216 module and library.

When using VEE, this call is done by VEE and is not a part of the application.

3. Determine the size in bytes of the data (throughput) file.

File size = header size (if used) + (size of scans � number of scans). The scan size is
the block size times the number of channels.

4. Call agn2216_tputfile_open_record() to create a LIF throughput file of needed size and
to open it for writing.

If a header is used, it can be written by calling agn2216_tputfile_write_aint16() or
other agn2216_tputfile_write functions. The header size and structure must be known
to the playback application so that it can be read properly and that the beginning of
the data can be determined.

5. Call agn2216_tput_setup_record() to setup the N2216 for local bus throughput
recording.

6. Call agn2216_tput_reset_localbus(tputhandle, 1) to reset the N2216 local bus.

7. Set up the local bus on the data source.

8. Call agn2216_tput_reset_localbus(tputhandle, 0) to enable the N2216 local bus.

9. Call agn2216_tput_start_record() to start recording data on the N2216. The data does
not actually begin flowing across the local bus until the data source is started.

78

VXIplug&play Reference
Using the Agilent N2216A VXIplug&play Library

10.Start the data source.

11.Call agn2216_tput_finished() to check for the completion of the data recording.
Repeat as needed.

12.When the data recording is finished, call agn2216_tput_bytes() to get the number of
bytes recorded.

13.Stop the data source from sending more data to the local bus.

14.If it is desired to update a header, call agn2216_tputfile_open_update() to open the file
for writing and use an agn2216_tputfile_write function to rewrite the header as
needed.

15.Call agn2216_close() to close the N2216 module and library.

79

VXIplug&play Reference
Using the Agilent N2216A VXIplug&play Library

Playing back data from a throughput file

Programming steps for playing back recorded data

1. Call agn2216_init() to initialize the N2216 module and library.

When using VEE, this call is done by VEE and is not a part of the application.

2. Call agn2216_tputfile_open_playback() to open the LIF throughput file for reading.

If a header is used, it MUST be read by calling agn2216_tputfile_read_aint16() or other
agn2216_tputfile_read functions. The header size and structure must be the same as
used for recording.

3. Determine the size in bytes of each data transfer (scan) being read.

4. Call agn2216_tput_setup_playback() to setup N2216 for throughput data file playback.

5. Determine the size in bytes of the data to be read. Exclude header, which should have
been read. Data size = size of scans � number of scans

6. Call agn2216_tput_start_playback() to start the N2216 reading data into shared RAM.

7. Allocate the memory needed to transfer and process the data to be read.

8. Call agn2216_tput_playback_read_aint16 or other agn2216_tput_playback_read
functions to read each scan of data.

9. Process or display data as needed.

10.Repeat the reading of data scans until all desired data has been read.

11.After the data has been read, call agn2216_tput_abort() to stop the playback from the
N2216.

12.Free the memory allocated earlier.

13.Call agn2216_close() to close the N2216 module and library.

80

VXIplug&play Reference
Function Reference

Function Reference

The Agilent N2216A VXIplug&play driver consists of functions, DLLs, and libraries to
allow you to program the Agilent N2216A or HP E1562 using different program languages.
On Windows 98 or Windows NT you can use HP VEE, Visual Basic, or Visual C/C++. On
HP-UX 10.2 you can use HP VEE or C.

Alphabetical Function Reference

agn2216_close (page 84)

agn2216_cmd (page 85)

agn2216_cmd_query_int32 (page 86)

agn2216_cmd_query_real64 (page 87)

agn2216_cmd_query_string (page 88)

agn2216_error_message (page 89)

agn2216_error_query (page 90)

agn2216_find (page 91)

agn2216_find_default_volume (page 92)

agn2216_get_debuglevel (page 93)

agn2216_get_dir_entry (page 94)

agn2216_get_first_dir_entry (page 96)

agn2216_get_timeout (page 98)

agn2216_init (page 99)

agn2216_init_volume (page 101)

agn2216_reset (page 102)

agn2216_revision_query (page 103)

agn2216_self_test (page 104)

agn2216_set_debuglevel (page 106)

agn2216_set_timeout (page 107)

agn2216_tput_abort (page 108)

agn2216_tput_bytes (page 109)

agn2216_tput_finished (page 110)

81

VXIplug&play Reference
Function Reference

agn2216_tput_playback_read_aint16 (page 111)

agn2216_tput_playback_read_aint32 (page 112)

agn2216_tput_playback_read_aint32_16 (page 113)

agn2216_tput_playback_read_char (page 114)

agn2216_tput_reset_localbus (page 115)

agn2216_tput_setup_playback (page 116)

agn2216_tput_setup_record (page 117)

agn2216_tput_start_playback (page 118)

agn2216_tput_start_record (page 119)

agn2216_tputfile_close (page 120)

agn2216_tputfile_open_playback (page 121)

agn2216_tputfile_open_record (page 122)

agn2216_tputfile_open_update (page 123)

agn2216_tputfile_read_aint16 (page 124)

agn2216_tputfile_read_aint32 (page 125)

agn2216_tputfile_read_areal64 (page 126)

agn2216_tputfile_read_char (page 127)

agn2216_tputfile_seek (page 128)

agn2216_tputfile_write_aint16 (page 129)

agn2216_tputfile_write_aint32 (page 130)

agn2216_tputfile_write_areal64 (page 131)

agn2216_tputfile_write_char (page 132)

82

VXIplug&play Reference
Function Reference

Hierarchical Function Reference

The hierarchical function reference lists the Agilent N2216 VXIplug&play functions by
classes as defined by the Agilent N2216 function panel. The function panel runs under
HP VEE, LabWindows®, and LabVIEW®.

DRIVER: agn2216.fp

Initialize

agn2216_init (page 99)

Data Store

Configure

agn2216_init_volume (page 101)

agn2216_tput_reset_localbus (page 115)

agn2216_tput_setup_playback (page 116)

agn2216_tput_setup_record (page 117)

agn2216_tputfile_close (page 120)

agn2216_tputfile_open_playback (page 121)

agn2216_tputfile_open_record (page 122)

agn2216_tputfile_open_update (page 123)

agn2216_tputfile_seek (page 128)

Initiate

agn2216_tput_abort (page 108)

agn2216_tput_bytes (page 109)

agn2216_tput_finished (page 110)

agn2216_tput_start_playback (page 118)

agn2216_tput_start_record (page 119)

Read-Write

agn2216_tput_playback_read_aint16 (page 111)

agn2216_tput_playback_read_aint32 (page 112)

agn2216_tput_playback_read_aint32_16 (page 113)

agn2216_tput_playback_read_char (page 114)

agn2216_tputfile_read_aint16 (page 124)

agn2216_tputfile_read_aint32 (page 125)

agn2216_tputfile_read_areal64 (page 126)

agn2216_tputfile_read_char (page 127)

agn2216_tputfile_write_aint16 (page 129)

agn2216_tputfile_write_aint32 (page 130)

83

VXIplug&play Reference
Function Reference

agn2216_tputfile_write_areal64 (page 131)

agn2216_tputfile_write_char (page 132)

Utility

agn2216_cmd (page 85)

agn2216_cmd_query_int32 (page 86)

agn2216_cmd_query_real64 (page 87)

agn2216_cmd_query_string (page 88)

agn2216_error_message (page 89)

agn2216_error_query (page 90)

agn2216_find (page 91)

agn2216_find_default_volume (page 92)

agn2216_get_debuglevel (page 93)

agn2216_set_debuglevel (page 106)

agn2216_get_dir_entry (page 94)

agn2216_get_first_dir_entry (page 96)

agn2216_get_timeout (page 98)

agn2216_set_timeout (page 107)

agn2216_reset (page 102)

agn2216_revision_query (page 103)

agn2216_self_test (page 104)

Close

agn2216_close (page 84)

84

VXIplug&play Reference
Function Reference

agn2216_close

Close the VXIplug&play library and release all resources.

Syntax: ViStatus _VI_FUNC agn2216_close(ViSession vi);

Comments: Close the VXIplug&play library, close the E1562 LIF library, release all resources for use
by other programs.

It is good programming practice to call this agn2216_close() function when you are done
with the resources. It is possible that not calling this function could cause a DLL on the
PC to hold some memory or hardware resources until a power down.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Example: /* close and deallocate resources */

vierr=agn2216_close(session);

if(vierr)

{

 vierr2=agn2216_error_message(session,vierr,st);

 printf("error %d = %s\n",vierr,st);

 exit(0);

}

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

85

VXIplug&play Reference
Function Reference

agn2216_cmd

Sends a string to the instrument, for commands where no response is expected.

Syntax: ViStatus _VI_FUNC agn2216_cmd(ViSession vi, ViString cmd);

Comments: Passes a SCPI command string to the instrument. This must be a null terminated string
that does not exceed 8 KBytes.

For SCPI commands that return numbers use agn2216_cmd_query_int32 or agn2216_
cmd_query_real64.

For SCPI commands that return a string use agn2216_cmd_query_string.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

cmd command string sent to the instrument

Data Type: ViString
Input/Output: IN

86

VXIplug&play Reference
Function Reference

agn2216_cmd_query_int32

Sends a string to the instrument, and returns a numeric response.

Syntax: ViStatus _VI_FUNC agn2216_cmd_query_int32(ViSession vi, ViString cmd,
ViPInt32 response);

Comments: Passes a SCPI command string to the instrument. This must be a null terminated string
that does not exceed 8 KBytes.

The numeric response is returned as an Int32, space for which must be allocated before
calling this function.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

cmd command string sent to the instrument

Data Type: ViString
Input/Output: IN

response response from instrument

Data Type: ViPInt32
Input/Output: OUT

87

VXIplug&play Reference
Function Reference

agn2216_cmd_query_real64

Sends a string to the instrument, and returns a numeric response.

Syntax: ViStatus _VI_FUNC agn2216_cmd_query_real64(ViSession vi, ViString cmd,
ViPReal64 response);

Comments: Passes a SCPI command string to the instrument. This must be a null terminated string
that does not exceed 8 KBytes.

The numeric response is returned as a Real64, space for which must be allocated before
calling this function.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

cmd command string sent to the instrument

Data Type: ViString
Input/Output: IN

response response from instrument

Data Type: ViPReal64
Input/Output: OUT

88

VXIplug&play Reference
Function Reference

agn2216_cmd_query_string

Sends a string to the instrument, and returns a numeric response.

Syntax: ViStatus _VI_FUNC agn2216_cmd_query_string(ViSession vi, ViString cmd,
ViInt32 size, ViChar response[]);

Comments: Passes a SCPI command string to the instrument. This must be a null terminated string
that does not exceed 8 KBytes.

The response is returned in a ViChar[] array, which must be allocated by you before
calling this function.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

cmd command string sent to the instrument

Data Type: ViString
Input/Output: IN

size Size preallocated for response from instrument.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_INT32POS_MIN 0
AGN2216_INT32_MAX 2147483647

response Response from instrument.

Data Type: ViChar []
Input/Output: OUT

89

VXIplug&play Reference
Function Reference

agn2216_error_message

Translates a status number to a string description.

Syntax: ViStatus _VI_FUNC agn2216_error_message(ViSession vi, ViStatus error,
ViChar _VI_FAR message[]);

Comments: agn2216_error_message() accepts an error number and buffer, and will write a string into
the buffer describing the error. The buffer should be at least 256 bytes long.

The error number referred to above is the return status that is returned from every
function in the VXIplug&play library.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Example: void main()
{
ViSession session;
char st[255];
ViStatus vierr;
ViStatus vierr2;

 /* initialize instrument This code ASSUMES VXI/SCSI Interface module
at address 144 */

 vierr=agn2216_init("VXI0::144::INSTR",0,1,&session);

 if(vierr)

 {

 vierr2 = agn2216_error_message(session,vierr,st);

 printf("error %d = %s\n",vierr,st);

 exit(0);

 }

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

error This is the ViStatus number for which you want a description.

Data Type: ViStatus
Input/Output: IN
Values:
AGN2216_INT32_MIN -2147483648
AGN2216_INT32_MAX 2147483647

message Returns the error description string.

Data Type: ViChar _VI_FAR []
Input/Output: OUT

90

VXIplug&play Reference
Function Reference

agn2216_error_query

Queries the instrument and returns instrument specific error information.

Syntax: ViStatus _VI_FUNC agn2216_error_query(ViSession vi, ViPInt32 error,
ViChar _VI_FAR error_message[]);

Comments: Sends a syst:err? to the instrument and returns the response. The returned string can be
up to 256 characters including null and must be allocated in advance.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Example: void main()

{

ViSession session;

char st[256];

ViStatus vierr;

ViInt32 instError

 ...

 vierr = agn2216_error_query(session,(ViPInt32)&instError,st);

 printf("error %d = %s\n",instError,st);

 exit(0);

}

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

error Instrument error code.

Data Type: ViPInt32
Input/Output: OUT

error_message Returns the instrument error message.

Data Type: ViChar _VI_FAR []
Input/Output: OUT

91

VXIplug&play Reference
Function Reference

agn2216_find

Find all VXI/SCSI Interface modules in the VXI bus.

Syntax: ViStatus _VI_FUNC agn2216_find(ViSession vi, ViInt32 addList[], ViInt32
listSize, ViPInt32 numFound, ViChar rsrc[], ViInt32 rsrcLen);

Comments: agn2216_find() searches the VXI mainframe and returns the VXI Logical Address for every
VXI/SCSI Interface module found.

Be sure to allocate the ViInt32 array before calling agn2216_find().

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine "agn2216_error_message"

Parameter Description

vi Instrument Handle returned from agn2216_init() or a VI_NULL.

Data Type: ViSession
Input/Output: IN

addList An array to hold VXI logical addresses of VXI/SCSI Interface modules.

Data Type: ViInt32 []
Input/Output: OUT

listSize Size of the addList array.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_FIND_LIST_SIZE_MIN 0
AGN2216_FIND_LIST_SIZE_MAX 255

numFound Returns the number of VXI/SCSI Interface modules found.

Data Type: ViPInt32
Input/Output: OUT

rsrc Returns the resource name for the first found VXI/SCSI Interface
module.

Data Type: ViChar []
Input/Output: OUT

rsrcLen Sets the size of the rsrc[] buffer.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_FIND_RSRC_LEN_MIN 0
AGN2216_FIND_RSRC_LEN_MAX 255

92

VXIplug&play Reference
Function Reference

agn2216_find_default_volume

Find the first disks on SCSI channel A and B.

Syntax: ViStatus _VI_FUNC agn2216_find_default_volume(ViSession vi, ViPString
volA, ViPString volB);

Comments: agn2216_find_default_volume() searches the N2216 SCSI buses for disks and returns the
lowest address found as hex ascii. Returns x if no disk is found on that SCSI channel.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine "agn2216_error_message"

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

volA Returns the string of the hex address of the first disk on SCSI A (0--f).

Data Type: ViPString
Input/Output: OUT

volB Returns the string of the hex address of the first disk on SCSI B (0--f).

Data Type: ViPString
Input/Output: OUT

93

VXIplug&play Reference
Function Reference

agn2216_get_debuglevel

Returns the current N2216 VXIplug&play library debuglevel setting for that vi.

Syntax: ViStatus _VI_FUNC agn2216_get_debuglevel(ViSession vi, ViPInt16
timeout);

Comments: The default debuglevel is 0 and no N2216 VXIplug&play library debug information is
printed.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

timeout Debug level

Data Type: ViPInt16
Input/Output: OUT

94

VXIplug&play Reference
Function Reference

agn2216_get_dir_entry

Gets the next file directory entry.

Syntax: ViStatus _VI_FUNC agn2216_get_dir_entry(ViSession vi, ViString volume,
ViPString filename, ViPString date, ViPString time, ViPString type,
ViPReal64 size, ViPReal64 allocated, ViPReal64 start);

Comments: agn2216_get_dir_entry() returns the next file directory entry and advances the current
get_dir_entry location. agn2216_get_first_dir_entry() must be called before agn2216_get_
dir_entry(), to reset the current get_dir_entry location.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

volume A 3 character string for the volume, Examples "V00", "Vx0", "V0x".

Data Type: ViString
Input/Output: IN

filename Returns the string containing the filename for this entry.

Data Type: ViPString
Input/Output: OUT

date Returns the string containing the date in the form "mmm dd,yyyy".

Data Type: ViPString
Input/Output: OUT

time Returns the string containing the time in the form "hh:mm:ss".

Data Type: ViPString
Input/Output: OUT

type Returns the string containing the file type (such as BDAT).

Data Type: ViPString
Input/Output: OUT

size File size used in bytes.

Data Type: ViPReal64
Input/Output: OUT

allocated File size allocated in bytes.

Data Type: ViPReal64
Input/Output: OUT

start Starting location, bytes.

Data Type: ViPReal64
Input/Output: OUT

95

VXIplug&play Reference
Function Reference

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine "agn2216_error_message"

96

VXIplug&play Reference
Function Reference

agn2216_get_first_dir_entry

Gets the first entry in the file directory.

Syntax: ViStatus _VI_FUNC agn2216_get_first_dir_entry(ViSession vi, ViString
volume, ViPString filename, ViPString date, ViPString time, ViPString
type, ViPReal64 size, ViPReal64 allocated, ViPReal64 start);

Comments: agn2216_get_first_dir_entry() returns the first entry in the file directory. Sets the current
get_dir_entry location to the 2nd entry.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

volume A 3 character string for the volume, Examples "V00", "Vx0", "V0x".

Data Type: ViString
Input/Output: IN

filename Returns the string containing the filename for this entry.

Data Type: ViPString
Input/Output: OUT

date Returns the string containing the date in the form "mmm dd,yyyy".

Data Type: ViPString
Input/Output: OUT

time Returns the string containing the time in the form "hh:mm:ss".

Data Type: ViPString
Input/Output: OUT

type Returns the string containing the file type (such as BDAT).

Data Type: ViPString
Input/Output: OUT

size File size used in bytes.

Data Type: ViPReal64
Input/Output: OUT

allocated File size allocated in bytes.

Data Type: ViPReal64
Input/Output: OUT

start Starting location, bytes.

Data Type: ViPReal64
Input/Output: OUT

97

VXIplug&play Reference
Function Reference

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine "agn2216_error_message"

98

VXIplug&play Reference
Function Reference

agn2216_get_timeout

Returns the current timeout in milliseconds.

Syntax: ViStatus _VI_FUNC agn2216_get_timeout(ViSession vi, ViPInt32 timeout);

Comments: Some disk operations are slow, so the default timeout, set by agn2216_init, is 30 seconds.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

timeout Timeout in milliseconds

Data Type: ViPInt32
Input/Output: OUT

99

VXIplug&play Reference
Function Reference

agn2216_init

Initialize the VXIplug&play library and register all VXI/SCSI Interface modules.

Syntax: ViStatus _VI_FUNC agn2216_init(ViRsrc rsrcName, ViBoolean id_query,
ViBoolean reset, ViPSession vi);

Comments: The initialize function initializes the software connection to the instrument and optionally
verifies that instrument is in the system. It also initializes the E1562 LIF library. If the
E1562 LIF library is already in use an error may occur.

If the agn2216_init() function encounters an error, then the value of the vi output
parameter will be VI_NULL.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

rsrcName The Instrument Description.

Data Type: ViRsrc
Input/Output: IN

id_query If(VI_TRUE) Perform In-System Verification.

If(VI_FALSE) Do not perform In-System Verification.

Data Type: ViBoolean
Input/Output: IN

reset If(VI_TRUE) Perform Reset Operation.

If(VI_FALSE) Do not perform Reset operation.

Data Type: ViBoolean
Input/Output: IN

vi Instrument Handle. This is VI_NULL if an error occurred during the
init.

Data Type: ViPSession
Input/Output: OUT

100

VXIplug&play Reference
Function Reference

Example: void main()

{

ViSession session;

char st[100];

ViStatus vierr;

ViStatus vierr2;

 /* initialize instrument This code ASSUMES VXI/SCSI Interface module
at address 144 */

 vierr=agn2216_init("VXI0::144::INSTR",0,1,&session);

 if(vierr)

 {

 vierr2=agn2216_error_message(session,vierr,st);

 printf("error %d = %s\n",vierr,st);

 exit(0);

 }

101

VXIplug&play Reference
Function Reference

agn2216_init_volume

Initializes (formats) the volume with a LIF directory.

Syntax: ViStatus _VI_FUNC agn2216_init_volume(ViSession vi, ViString volume);

Comments: The init_volume function initializes a LIF directory on the disk(s) corresponding to the
volume. Existing data will be lost.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the return
value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

volume A string for the volume, Examples "V00", "Vx0", "V0x".

Data Type: ViString
Input/Output: IN

102

VXIplug&play Reference
Function Reference

agn2216_reset

The function returns the instrument to the reset state.

Syntax: ViStatus _VI_FUNC agn2216_reset(ViSession vi);

Comments: The function sends the instrument a "*rst", returning the instrument to the reset state.

In addition, this function cancels any pending command or query.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

103

VXIplug&play Reference
Function Reference

agn2216_revision_query

Returns revision information for both the driver on the host and the software in the
VXI/SCSI Interface module. The returned string can be up to 256 characters including
null.

Syntax: ViStatus _VI_FUNC agn2216_revision_query(ViSession vi, ViChar driver_
rev[], ViChar instr_rev[]);

Comments: The returned string can be up to 256 characters including null and must be allocated in
advance.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

driver_rev Returns a string containing the software revision information.

Data Type: ViChar []
Input/Output: OUT

instr_rev Returns a string containing the instrument driver and firmware
revision.

Data Type: ViChar []
Input/Output: OUT

104

VXIplug&play Reference
Function Reference

agn2216_self_test

Performs a selftest of the hardware.

Syntax: ViStatus _VI_FUNC agn2216_self_test(ViSession vi, ViPInt16 testResult,
ViChar testMessage[]);

Comments: agn2216_self_test() performs a selftest of the hardware. It returns 0 if all tests pass and a
negative error code if the self test fails.

testMessage is a short message written back, so be sure to allocate at least 80 characters.

Specify which boards to test by calling agn2216_init(). Even if agn2216_init() fails, the
board logical addresses are saved for use by agn2216_self_test().

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Example: char message[100];

ViStatus vierr;

ViStatus vierr2;

ViSession session;

ViInt16 result;

 /* initialize instrument This code ASSUMES VXI/SCSI Interface module
at address 144 */

 vierr=agn2216_init("VXI0::144::INSTR",0,1,&session);

 if(vierr)

 {

 vierr2=agn2216_error_message(session,vierr,message);

 printf("error %d = %s\n",vierr,st);

 }

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

testResult result of test

Data Type: ViPInt16
Input/Output: OUT

testMessage string result of test

Data Type: ViChar []
Input/Output: OUT

105

VXIplug&play Reference
Function Reference

 vierr=agn2216_self_test(session,&result,message)

 if(vierr)

 {

 vierr2=agn2216_error_message(session,vierr,message);

 printf("error %d = %s\n",vierr,st);

 exit(0);

 }

 printf("selftest reports %d = %s\n",result,message);

106

VXIplug&play Reference
Function Reference

agn2216_set_debuglevel

Sets the debug level for the N2216 VXIplug&play library.

Syntax: ViStatus _VI_FUNC agn2216_set_debuglevel(ViSession vi, ViInt16
debuglevel);

Comments: The default debuglevel is 0 and no N2216 VXIplug&play library debug information is
printed. If debuglevel >= 1, then error information is printed to stderr. If debug > 1, then
additional debug information is printed to stdout.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

debuglevel

Data Type: ViInt16
Input/Output: IN
Values:
AGN2216_INT16POS_MIN 0
AGN2216_INT16_MAX 32767

107

VXIplug&play Reference
Function Reference

agn2216_set_timeout

Sets the timeout in milliseconds.

Syntax: ViStatus _VI_FUNC agn2216_set_timeout(ViSession vi, ViInt32 timeout);

Comments: Some disk operations are slow, so the default timeout, set by agn2216_init, is 30 seconds.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

timeout

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_INT32POS_MIN
AGN2216_INT32_MAX 2147483647

108

VXIplug&play Reference
Function Reference

agn2216_tput_abort

Halt a disk module sequence.

Syntax: ViStatus _VI_FUNC agn2216_tput_abort(ViSession vi);

Comments: This can be used to abort a throughput record before it would normally complete. This
function may also be used to stop a playback sequence early and place the VXI/SCSI
Interface module in an idle state.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

109

VXIplug&play Reference
Function Reference

agn2216_tput_bytes

Gets the number of bytes for the finished session.

Syntax: ViStatus _VI_FUNC agn2216_tput_bytes(ViSession vi, ViPReal64 dataBytes);

Comments: Gets the number of bytes for the finished session.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

dataBytes

Data Type: ViPReal64
Input/Output: OUT

110

VXIplug&play Reference
Function Reference

agn2216_tput_finished

Checks to see if the throughput session is finished.

Syntax: ViStatus _VI_FUNC agn2216_tput_finished(ViSession vi, ViPInt32 flag);

Comments: The flag is set when record is finished. If the session is finished, this function also updates
the size of the thruput session, which is returned by agn2216_init().

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

flag

Data Type: ViPInt32
Input/Output: OUT

111

VXIplug&play Reference
Function Reference

agn2216_tput_playback_read_aint16

Copies bytes from playback to buffer.

Syntax: ViStatus _VI_FUNC agn2216_tput_playback_read_aint16(ViSession vi,
ViInt32 size, ViPInt32 readSize, ViInt16 buf[]);

Comments: Reads throughput file via shared memory. Returns data as ViInt16[], array. Performs the
required synchronization with the Agilent N2216A to get bytes transferred into its shared
RAM and copy the bytes into the host. The value size should be less than or equal to
262142 ((256*1024) - 2), AGN2216_DATA_SRAM_MAX, and should be the same as the
value bytesPerScan passed to agn2216_tput_setup_playback(). The response is returned
in a buffer array, which must be allocated by you before calling this function.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

size Number of bytes (not data elements) to be read. Must be a multiple of
2 bytes.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_TPUT_TRANSFER_MIN 0
AGN2216_TPUT_TRANSFER_MAX 262142

readSize Number of bytes (not data elements) returned in buf.

Data Type: ViPInt32
Input/Output: OUT

buf Data buffer.

Data Type: ViInt16 []
Input/Output: OUT

112

VXIplug&play Reference
Function Reference

agn2216_tput_playback_read_aint32

Copies bytes from playback to buffer.

Syntax: ViStatus _VI_FUNC agn2216_tput_playback_read_aint32(ViSession vi,
ViInt32 size, ViPInt32 readSize, ViInt32 buf[]);

Comments: Reads throughput file via shared memory. Returns data as ViInt32[], array. Performs the
required synchronization with the Agilent N2216A to get bytes transferred into its shared
RAM and copy the bytes into the host. The value size should be less than or equal to
262142 ((256*1024) - 2), AGN2216_DATA_SRAM_MAX, and should be the same as the
value bytesPerScan passed to agn2216_tput_setup_playback(). The response is returned
in a buf array, which must be allocated by you before calling this function.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

size Number of bytes (not data elements) to be read. Must be a multiple of
2 bytes.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_TPUT_TRANSFER_MIN 0
AGN2216_TPUT_TRANSFER_MAX 262142

readSize Number of bytes (not data elements) returned in buf.

Data Type: ViPInt32
Input/Output: OUT

buf Data buffer.

Data Type: ViInt32 []
Input/Output: OUT

113

VXIplug&play Reference
Function Reference

agn2216_tput_playback_read_aint32_16

Copies bytes from playback to buffer converting int16 to int32.

Syntax: ViStatus _VI_FUNC agn2216_tput_playback_read_aint32_16(ViSession vi, ViInt32 size,
ViPInt32 readSize, ViInt32 buf[]);

Comments: Reads throughput file via shared memory. Returns ViInt16 data as ViInt32[] array.
Performs the required synchronization with the Agilent N2216 to get bytes transferred
into its shared RAM and copy the bytes into the host. The value size should be less than
or equal to 262142 ((256*1024) - 2), AGN2216_DATA_SRAM_MAX, and should be the same
as the value bytesPerScan passed to agn2216_tput_setup_playback(). The response is
returned in a buf array, which must be allocated by you before calling this function.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

size Number of bytes (not data elements) to be read. Must be a multiple of
4 bytes.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_TPUT_TRANSFER_MIN 0
AGN2216_TPUT_TRANSFER_MAX 262142

readSize Number of bytes (not data elements) returned in buf. This will be
2*size.

Data Type: ViPInt32
Input/Output: OUT

buf Data buffer.

Data Type: ViInt32 []
Input/Output: OUT

114

VXIplug&play Reference
Function Reference

agn2216_tput_playback_read_char

Copies bytes from playback to buffer.

Syntax: ViStatus _VI_FUNC agn2216_tput_playback_read_char(ViSession vi, ViInt32
size, ViPInt32 readSize, ViChar buf[]);

Comments: Reads throughput file via shared memory. Returns data as ViChar[] array. Performs the
required synchronization with the Agilent N2216A to get bytes transferred into its shared
RAM and copy the bytes into the host. The value size should be less than or equal to
262142 ((256*1024) - 2), AGN2216_DATA_SRAM_MAX, and should be the same as the
value bytesPerScan passed to agn2216_tput_setup_playback(). The response is returned
in a buf[] array, which must be allocated by you before calling this function.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

size Number of bytes to be read. Must be a multiple of 2 bytes.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_TPUT_TRANSFER_MIN 0
AGN2216_TPUT_TRANSFER_MAX 262142

readSize Number of bytes returned in buf[].

Data Type: ViPInt32
Input/Output: OUT

buf Data buffer.

Data Type: ViChar []
Input/Output: OUT

115

VXIplug&play Reference
Function Reference

agn2216_tput_reset_localbus

Put the disk module local bus into or out of reset.

Syntax: ViStatus _VI_FUNC agn2216_tput_reset_localbus(ViSession vi, ViInt16
resetState);

Comments: Allow the application to put the disk module local bus into reset, or take it out of reset.
This is needed to provide for the safe reset of all devices on the local bus. For example, a
safe reset consists of first placing all adjacent local bus devices into reset, then from left
to right in the VXI card cage, take each device’s local bus out of reset.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

resetState Reset action.

Data Type: ViInt16
Input/Output: IN
Values:
AGN2216_TPUT_LBUSRESET_OUT 0
AGN2216_TPUT_LBUSRESET_IN 1

116

VXIplug&play Reference
Function Reference

agn2216_tput_setup_playback

Initialize the disk module sequence to perform a playback.

Syntax: ViStatus _VI_FUNC agn2216_tput_setup_playback(ViSession vi, ViReal64
dataOffset, ViInt32 bytesPerScan);

Comments: Playback uses an disk module sequence to read bytes into the shared RAM on disk
module. Synchronization between the host program and the disk module is done through
the use of the first 2 bytes of disk module shared RAM as a flag. By using the routine
agn2216_tput_playback_read(), all synchronization is encapsulated. Be aware that the
maximum value for bytesPerScan is 262142. A session is setup to be used with the disk
module sequence. The open playback file is closed. The functions agn2216_tput_
playback_read_aint16(), etc., are used to perform the read and the required
synchronization with the disk module after agn2216_tput_start_playback() has been
called.

Data_offset is a ViReal64 because ViInt32 does not have enough bits to represent the
number of bytes in a very large file.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

dataOffset Byte offset into file. Must be a multiple of 2 bytes.

Data Type: ViReal64
Input/Output: IN
Values:
AGN2216_TPUT_BYTES_MIN 0
AGN2216_TPUT_BYTES_MAX 4503599627370503

bytesPerScan Scan size, bytes. Must be a multiple of 2 bytes.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_TPUT_TRANSFER_MIN 0
AGN2216_TPUT_TRANSFER_MAX 262142

117

VXIplug&play Reference
Function Reference

agn2216_tput_setup_record

Initialize the disk module sequence to perform a local bus throughput.

Syntax: ViStatus _VI_FUNC agn2216_tput_setup_record(ViSession vi, ViInt32
bytesPerInputBlock, ViInt16 numberInputs, ViPInt32 retPadByte);

Comments: Initialize the disk module sequence to perform a local bus throughput with the specified
number of inputs and blocksize. A constant blocksize for all channels is assumed. A disk
module session is setup to write at the next SCSI block boundary in the file opened in
agn2216_tputfile_open_record(). The open file is then closed, as the session is used for
the throughput instead of the file. Any header information to be written to the file should
be written before calling this function as the current position of the file pointer is used to
determine where to start writing the data. The number of bytes needed for padding is
returned so that the offset in the file to the recorded data can be determined.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

bytesPerInputBlock Bytes per input channel block. Must be a multiple of 4 bytes.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_TPUT_TRANSFER_MIN 0
AGN2216_TPUT_TRANSFER_MAX 262142

numberInputs Number of input channels.

Data Type: ViInt16
Input/Output: IN
Values:
AGN2216_TPUT_INT16POS_MIN 0
AGN2216_TPUT_INT16_MAX 32767

retPadByte Number of bytes to the next disk sector.

Data Type: ViPInt32
Input/Output: OUT

118

VXIplug&play Reference
Function Reference

agn2216_tput_start_playback

Start the disk module playback sequence.

Syntax: ViStatus _VI_FUNC agn2216_tput_start_playback(ViSession vi, ViReal64
lengthInBytes, ViInt32 firstScanOffset);

Comments: Start the disk module playback sequence. The argument firstScanOffset is the scan
number of the first scan�it is zero otherwise.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

lengthInBytes Playback length. Must be a multiple of 2 bytes.

Data Type: ViReal64
Input/Output: IN
Values:
AGN2216_TPUT_BYTES_MIN 0
AGN2216_TPUT_BYTES_MAX 4503599627370503

firstScanOffset Scan number of the first scan.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_INT32POS_MIN 0
AGN2216_INT32_MAX 2147483647

119

VXIplug&play Reference
Function Reference

agn2216_tput_start_record

Start the VXI/SCSI Interface module record sequence.

Syntax: ViStatus _VI_FUNC agn2216_tput_start_record(ViSession vi, ViReal64
lengthInBytes);

Comments: Start the record sequence.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

lengthInBytes Record length. Must be a multiple of 4 bytes.

Data Type: ViReal64
Input/Output: IN
Values:
AGN2216_TPUT_BYTES_MIN 0
AGN2216_TPUT_BYTES_MAX 4503599627370503

120

VXIplug&play Reference
Function Reference

agn2216_tputfile_close

Close a LIF file.

Syntax: ViStatus _VI_FUNC agn2216_tputfile_close(ViSession vi, ViInt16
tputfileId);

Comments: Closes an existing LIF file, removing it from the open file table.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

tputfileId File id returned from agn2216_tputfile_open_ () functions.

Data Type: ViInt16
Input/Output: IN
Values:
AGN2216_TPUTFILEID_MIN 0
AGN2216_TPUTFILEID_MAX 32

121

VXIplug&play Reference
Function Reference

agn2216_tputfile_open_playback

Open a disk module LIF file in preparation for a playback or reading.

Syntax: ViStatus _VI_FUNC agn2216_tputfile_open_playback(ViSession vi, ViString
filename, ViPString fullFilename, ViPInt16 tputfileid);

Comments: Opens an existing E1562 LIF file in preparation for a throughput post-process. The open
file’s tputfileid is returned so the application may read any header information contained
in the file. The volume name may be defaulted so the full filename including the volume is
returned.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

filename File to open.

Data Type: ViString
Input/Output: IN

fullFilename Full filename returned.

Data Type: ViPString
Input/Output: OUT

tputfileid Throughput file ID returned.

Data Type: ViPInt16
Input/Output: OUT

122

VXIplug&play Reference
Function Reference

agn2216_tputfile_open_record

Create and open a LIF file in preparation for a throughput record.

Syntax: ViStatus _VI_FUNC agn2216_tputfile_open_record(ViSession vi, ViString
filename, ViReal64 totalBytes, ViPString fullFilename, ViPInt16
tputfileid);

Comments: The total file size must be known at open time, as a LIF file cannot be extended in size
after it has been created. This means that the value of totalBytes must include the size of
the data to be recorded, the size of any header information, and the size of any
information following the recorded data. The value passed to totalBytes will be padded
with one SCSI blocksize, since the recorded data must start at a SCSI block boundary.
This will mean that any directory listing may show a different size for the file than what
was passed to this function. The allocated file size, in bytes, is returned.

Since this routine may be called with just a filename allowing the volume to be defaulted,
the full filename is returned to the calling function. It is possible to default the volume
name only if a single disk is used as the LIF volume, or if a pair of disks, one on each SCSI
bus of the VXI/SCSI Interface module, is used as the LIF volume. Also, the SCSI devices
must be the lowest addressed devices on the SCSI bus. If the volume name is specified,
any number of SCSI devices may be used to make up the file system. This function
expects that a file system already exists on the devices. This can be done using the
e1565in.exe command from the LIF utilities or from the soft front panel.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().
Data Type: ViSession
Input/Output: IN

filename File to open.
Data Type: ViString
Input/Output: IN

totalBytes
Data Type: ViReal64
Input/Output: IN
Values:
AGN2216_TPUT_BYTES_MIN 0
AGN2216_TPUT_BYTES_MAX 4503599627370503

fullFilename Full filename returned.
Data Type: ViPString
Input/Output: OUT

tputfileid Throughput file ID returned.
Data Type: ViPInt16
Input/Output: OUT

123

VXIplug&play Reference
Function Reference

agn2216_tputfile_open_update

Open an existing file for modification.

Syntax: ViStatus _VI_FUNC agn2216_tputfile_open_update(ViSession vi, ViString
fullFileName, ViPInt16 tputfileid);

Comments: Open an existing file for modification.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

fullFileName Full file name.

Data Type: ViString
Input/Output: IN

tputfileid Throughput file ID returned.

Data Type: ViPInt16
Input/Output: OUT

124

VXIplug&play Reference
Function Reference

agn2216_tputfile_read_aint16

Read file from current location.

Syntax: ViStatus _VI_FUNC agn2216_tputfile_read_aint16(ViSession vi, ViInt16
tputfileId, ViInt32 size, ViPInt32 readSize, ViInt16 buf[]);

Comments: Read file from current location using the N2216 shared memory. The response is returned
in a ViInt16 buf[] array, which must be allocated by you before calling this function.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

tputfileId File id returned from agn2216_tputfile_open_ () functions.

Data Type: ViInt16
Input/Output: IN
Values:
AGN2216_TPUTFILEID_MIN 0
AGN2216_TPUTFILEID_MAX 32

size Number of bytes (not data elements) to be read.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_TPUT_TRANSFER_MIN 0
AGN2216_TPUT_TRANSFER_MAX 262142

readSize Number of bytes (not data elements) returned in buf.

Data Type: ViPInt32
Input/Output: OUT

buf Data buffer.

Data Type: ViInt16 []
Input/Output: OUT

125

VXIplug&play Reference
Function Reference

agn2216_tputfile_read_aint32

Read file from current location.

Syntax: ViStatus _VI_FUNC agn2216_tputfile_read_aint32(ViSession vi, ViInt16
tputfileId, ViInt32 size, ViPInt32 readSize, ViInt32 buf[]);

Comments: Read file from current location using the N2216 shared memory. The response is returned
in a ViInt32 buf[] array, which must be allocated by you before calling this function.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

tputfileId File id returned from agn2216_tputfile_open_ () functions.

Data Type: ViInt16
Input/Output: IN
Values:
AGN2216_TPUTFILEID_MIN 0
AGN2216_TPUTFILEID_MAX 32

size Number of bytes (not data elements) to be read.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_TPUT_TRANSFER_MIN 0
AGN2216_TPUT_TRANSFER_MAX 262142

readSize Number of bytes (not data elements) returned in buf.

Data Type: ViPInt32
Input/Output: OUT

buf Data buffer.

Data Type: ViInt32 []
Input/Output: OUT

126

VXIplug&play Reference
Function Reference

agn2216_tputfile_read_areal64

Read file from current location.

Syntax: ViStatus _VI_FUNC agn2216_tputfile_read_areal64(ViSession vi, ViInt16
tputfileId, ViInt32 size, ViPInt32 readSize, ViReal64 buf[]);

Comments: Read file from current location using the N2216 shared memory. The response is returned
in a ViReal64 buf[] array, which must be allocated by you before calling this function.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

tputfileId File id returned from agn2216_tputfile_open_ () functions.

Data Type: ViInt16
Input/Output: IN
Values:
AGN2216_TPUTFILEID_MIN 0
AGN2216_TPUTFILEID_MAX 32

size Number of bytes (not data elements) to be read.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_TPUT_TRANSFER_MIN 0
AGN2216_TPUT_TRANSFER_MAX 262142

readSize Number of bytes (not data elements) returned in buf.

Data Type: ViPInt32
Input/Output: OUT

buf Data buffer.

Data Type: ViReal64 []
Input/Output: OUT

127

VXIplug&play Reference
Function Reference

agn2216_tputfile_read_char

Read file from current location.

Syntax: ViStatus _VI_FUNC agn2216_tputfile_read_char(ViSession vi, ViInt16
tputfileId, ViInt32 size, ViPInt32 readSize, ViChar buf[]);

Comments: Read file from current location using the N2216 shared memory. The response is returned
in a ViChar buf[] array, which must be allocated by you before calling this function.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

tputfileId File id returned from agn2216_tputfile_open_ () functions.

Data Type: ViInt16
Input/Output: IN
Values:
AGN2216_TPUTFILEID_MIN 0
AGN2216_TPUTFILEID_MAX 32

size Number of bytes to be read.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_TPUT_TRANSFER_MIN 0

readSize Number of bytes returned in buf[].

Data Type: ViPInt32
Input/Output: OUT

buf Data buffer.

Data Type: ViChar []
Input/Output: OUT

128

VXIplug&play Reference
Function Reference

agn2216_tputfile_seek

Seek to an absolute location in a file.

Syntax: ViStatus _VI_FUNC agn2216_tputfile_seek(ViSession vi, ViInt16
tputfileId, ViReal64 dataOffset);

Comments: Seek to an absolute location in a file.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

tputfileId File id returned from agn2216_tputfile_open_ () functions.

Data Type: ViInt16
Input/Output: IN
Values:
AGN2216_TPUTFILEID_MIN 0
AGN2216_TPUTFILEID_MAX 32

dataOffset Absolute seek location, bytes.

Data Type: ViReal64
Input/Output: IN
Values:
AGN2216_TPUT_BYTES_MIN 0
AGN2216_TPUT_BYTES_MAX 4503599627370503

129

VXIplug&play Reference
Function Reference

agn2216_tputfile_write_aint16

Write data from ViInt16 buf[] to a N2216 LIF file.

Syntax: ViStatus _VI_FUNC agn2216_tputfile_write_aint16(ViSession vi, ViInt16
tputfileId, ViInt32 size, ViInt16 buf[], ViPInt32 writeSize);

Comments: Write data from ViInt16 buf[] to current file location using the N2216 shared memory.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

tputfileId File id returned from agn2216_tputfile_open_ () functions.

Data Type: ViInt16
Input/Output: IN
Values:
AGN2216_TPUTFILEID_MIN 0
AGN2216_TPUTFILEID_MAX 32

size Number of bytes (not data elements) to be written.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_TPUT_TRANSFER_MIN 0
AGN2216_TPUT_TRANSFER_MAX 262142

buf Data buffer.

Data Type: ViInt16 []
Input/Output: IN

writeSize Number of bytes (not data elements) written from buf.

Data Type: ViPInt32
Input/Output: OUT

130

VXIplug&play Reference
Function Reference

agn2216_tputfile_write_aint32

Write data from ViInt32 buf[] to a N2216 LIF file.

Syntax: ViStatus _VI_FUNC agn2216_tputfile_write_aint32(ViSession vi, ViInt16
tputfileId, ViInt32 size, ViInt32 buf[], ViPInt32 writeSize);

Comments: Write data from ViInt32 buf[] to current file location using the N2216 shared memory.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

tputfileId

Data Type: ViInt16
Input/Output: IN
Values:
AGN2216_TPUTFILEID_MIN 0
AGN2216_TPUTFILEID_MAX 32

size Number of bytes (not data elements) to be written.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_TPUT_TRANSFER_MIN 0
AGN2216_TPUT_TRANSFER_MAX 262142

buf Data buffer.

Data Type: ViInt32 []
Input/Output: IN

writeSize Number of bytes (not data elements) written from buf.

Data Type: ViPInt32
Input/Output: OUT

131

VXIplug&play Reference
Function Reference

agn2216_tputfile_write_areal64

Write data from ViReal64 buf[] to a N2216 LIF file.

Syntax: ViStatus _VI_FUNC agn2216_tputfile_write_areal64(ViSession vi, ViInt16
tputfileId, ViInt32 size, ViReal64 buf[], ViPInt32 writeSize);

Comments: Write data from ViReal64 buf[] to current file location using the N2216 shared memory.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

tputfileId File id returned from agn2216_tputfile_open_ () functions.

Data Type: ViInt16
Input/Output: IN
Values:
AGN2216_TPUTFILEID_MIN 0
AGN2216_TPUTFILEID_MAX 32

size Number of bytes (not data elements) to be written.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_TPUT_TRANSFER_MIN 0
AGN2216_TPUT_TRANSFER_MAX 262142

buf Data buffer.

Data Type: ViReal64 []
Input/Output: IN

writeSize Number of bytes (not data elements) written from buf.

Data Type: ViPInt32
Input/Output: OUT

132

VXIplug&play Reference
Function Reference

agn2216_tputfile_write_char

Write data from ViChar buf[] to a N2216 LIF file.

Syntax: ViStatus _VI_FUNC agn2216_tputfile_write_char(ViSession vi, ViInt16
tputfileId, ViInt32 size, ViChar buf[], ViPInt32 writeSize);

Comments: Write data from ViChar buf[] to current file location using the N2216 shared memory.

Return Value: VI_SUCCESS: No error

Non VI_SUCCESS: Indicates error condition. To determine error message, pass the
return value to routine agn2216_error_message.

Parameter Description

vi Instrument Handle returned from agn2216_init().

Data Type: ViSession
Input/Output: IN

tputfileId File id returned from agn2216_tputfile_open_ () functions.

Data Type: ViInt16
Input/Output: IN
Values:
AGN2216_TPUTFILEID_MIN 0
AGN2216_TPUTFILEID_MAX 32

size Number of bytes (not data elements) to be written.

Data Type: ViInt32
Input/Output: IN
Values:
AGN2216_TPUT_TRANSFER_MIN 0
AGN2216_TPUT_TRANSFER_MAX 262142

buf Data buffer.

Data Type: ViChar []
Input/Output: IN

writeSize Number of bytes (not data elements) written from buf.

Data Type: ViPInt32
Input/Output: OUT

133

VXIplug&play Reference
VXIplug&play Library Errors

VXIplug&play Library Errors

Error Number Description

-1074003967 Parameter 1 is invalid

-1074003966 Parameter 2 is invalid

-1074003965 Parameter 3 is invalid

-1074003964 Parameter 4 is invalid

-1074003963 Parameter 5 is invalid

-1074003962 Parameter 6 is invalid

-1074003961 Parameter 7 is invalid

-1074003960 Parameter 8 is invalid

-1074003951 Instrument IDN does not match

-1074001184 E1562 LIF Error Unknown

-1074001183 E1562 LIF Error 1 - No session available (see Error Number 1 on page 309)

-1074001182 E1562 LIF Error 2 - Invalid volume name (see Error Number 2 on page 309)

-1074001181 E1562 LIF Error 3 - Missing volume name (see Error Number 3 on page 309)

-1074001180 E1562 LIF Error 4 - Volume already open (see Error Number 4 on page 309)

-1074001179 E1562 LIF Error 5 - Interface error (see Error Number 5 on page 309)

-1074001178 E1562 LIF Error 6 - Out of memory (see Error Number 6 on page 309)

-1074001177 E1562 LIF Error 7 - System error (see Error Number 7 on page 309)

-1074001176 E1562 LIF Error 8 - Invalid id (see Error Number 8 on page 309)

-1074001175 E1562 LIF Error 9 - Invalid file size (see Error Number 9 on page 309)

-1074001174 E1562 LIF Error 10 - Invalid file name (see Error Number 11 on page 309)

-1074001173 E1562 LIF Error 11 - Invalid file mode (see Error Number 11 on page 309)

-1074001172 E1562 LIF Error 12 - File does not exist (see Error Number 12 on page 309)

-1074001171 E1562 LIF Error 13 - File does not have size (see Error Number 13 on page 309)

-1074001170 E1562 LIF Error 14 - File size already specified (see Error Number 14 on page 309)

-1074001169 E1562 LIF Error 15 - End of file before transfer completed (see Error Number 15 on page 309)

-1074001168 E1562 LIF Error 16 - Invalid file type (see Error Number 16 on page 309)

-1074001167 E1562 LIF Error 17 - End of directory before transfer completed (see Error Number 17 on page 309)

-1074001166 E1562 LIF Error 18 - Not a LIF volume (see Error Number 18 on page 309)

134

VXIplug&play Reference
VXIplug&play Library Errors

-1074001165 E1562 LIF Error 19 - File rename volume error (see Error Number 19 on page 309)

-1074001164 E1562 LIF Error 20 - File position is past end of file (see Error Number 20 on page 309)

-1074001163 E1562 LIF Error 21 - End of file cannot be set beyond file size (see Error Number 21 on page 309)

-1074001162 E1562 LIF Error 22 - File open, cannot rename, move, copy or delete (see Error Number 22 on page 309)

-1074001152 N2216 SCPI Error Unknown

-1074001052 N2216 SCPI Error -100 - Command error (see Error Number -100 on page 269)

-1074001051 N2216 SCPI Error -101 - Invalid character (see Error Number -101 on page 269)

-1074001050 N2216 SCPI Error -102 - Syntax error (see Error Number -102 on page 269)

-1074001049 N2216 SCPI Error -103 - Invalid separator (see Error Number -103 on page 269)

-1074001048 N2216 SCPI Error -104 - Data type error (see Error Number -104 on page 269)

-1074001047 N2216 SCPI Error -105 - GET not allowed (see Error Number -105 on page 269)

-1074001044 N2216 SCPI Error -108 - Parameter not allowed (see Error Number -108 on page 269)

-1074001043 N2216 SCPI Error -109 - Missing parameter (see Error Number -109 on page 269)

-1074001042 N2216 SCPI Error -110 - Command header error (see Error Number -110 on page 269)

-1074001041 N2216 SCPI Error -111 - Header separator error (see Error Number -111 on page 269)

-1074001040 N2216 SCPI Error -112 - Program mnemonic too long (see Error Number -112 on page 269)

-1074001039 N2216 SCPI Error -113 - Undefined header (see Error Number -113 on page 269)

-1074001038 N2216 SCPI Error -114 - Header suffix out of range (see Error Number -114 on page 269)

-1074001032 N2216 SCPI Error -120 - Numeric data error (see Error Number -120 on page 269)

-1074001031 N2216 SCPI Error -121 - Invalid character in number (see Error Number -121 on page 269)

-1074001029 N2216 SCPI Error -123 - Exponent too large (see Error Number -123 on page 269)

-1074001028 N2216 SCPI Error -124 - Too many digits (see Error Number -124 on page 270)

-1074001024 N2216 SCPI Error -128 - Numeric data not allowed (see Error Number -128 on page 270)

-1074001022 N2216 SCPI Error -130 - Suffix error (see Error Number -130 on page 270)

-1074001021 N2216 SCPI Error -131 - Invalid suffix (see Error Number -131 on page 270)

-1074001018 N2216 SCPI Error -134 - Suffix too long (see Error Number -134 on page 270)

-1074001014 N2216 SCPI Error -138 - Suffix not allowed (see Error Number -138 on page 270)

-1074001012 N2216 SCPI Error -140 - Character data error (see Error Number -140 on page 270)

-1074001011 N2216 SCPI Error -141 - Invalid character data (see Error Number -141 on page 270)

-1074001008 N2216 SCPI Error -144 - Character data too long (see Error Number -144 on page 270)

-1074001004 N2216 SCPI Error -148 - Character data not allowed (see Error Number -148 on page 270)

-1074001002 N2216 SCPI Error -150 - String data error (see Error Number -150 on page 270)

-1074001001 N2216 SCPI Error -151 - Invalid string data (see Error Number -151 on page 270)

-1074000994 N2216 SCPI Error -158 - String data not allowed (see Error Number -158 on page 270)

-1074000992 N2216 SCPI Error -160 - Block data error (see Error Number -160 on page 270)

Error Number Description

135

VXIplug&play Reference
VXIplug&play Library Errors

-1074000991 N2216 SCPI Error -161 - Invalid block data (see Error Number -161 on page 270)

-1074000984 N2216 SCPI Error -168 - Block data not allowed (see Error Number -168 on page 270)

-1074000982 N2216 SCPI Error -170 - Expression error (see Error Number -170 on page 270)

-1074000981 N2216 SCPI Error -171 - Invalid expression (see Error Number -171 on page 270)

-1074000974 N2216 SCPI Error -178 - Expression data not allowed (see Error Number -178 on page 271)

-1074000971 N2216 SCPI Error -181 - Invalid outside macro definition (see Error Number -181 on page 271)

-1074000969 N2216 SCPI Error -183 - Invalid inside macro definition (see Error Number -183 on page 271)

-1074000952 N2216 SCPI Error -200 - Execution error (see Error Number -200 on page 271)

-1074000932 N2216 SCPI Error -220 - Parameter error (see Error Number -220 on page 271)

-1074000931 N2216 SCPI Error -221 - Settings conflict (see Error Number -221 on page 271)

-1074000930 N2216 SCPI Error -222 - Data out of range (see Error Number -222 on page 271)

-1074000929 N2216 SCPI Error -223 - Too much data (see Error Number -223 on page 271)

-1074000928 N2216 SCPI Error -224 - Illegal parameter value (see Error Number -224 on page 271)

-1074000912 N2216 SCPI Error -240 - Hardware error (see Error Number -240 on page 271)

-1074000911 N2216 SCPI Error -241 - Hardware missing (see Error Number -241 on page 271)

-1074000902 N2216 SCPI Error -250 - Mass storage error (see Error Number -250 on page 271)

-1074000901 N2216 SCPI Error -251 - Missing mass storage (see Error Number -251 on page 271)

-1074000900 N2216 SCPI Error -252 - Missing media (see Error Number -252 on page 271)

-1074000899 N2216 SCPI Error -253 - Corrupt media (see Error Number -253 on page 271)

-1074000898 N2216 SCPI Error -254 - Media full (see Error Number -254 on page 272)

-1074000894 N2216 SCPI Error -258 - Media protected (see Error Number -258 on page 272)

-1074000880 N2216 SCPI Error -272 - Macro execution error (see Error Number -272 on page 272)

-1074000879 N2216 SCPI Error -273 - Illegal macro label (see Error Number -273 on page 272)

-1074000876 N2216 SCPI Error -276 - Macro recursion error (see Error Number -276 on page 272)

-1074000875 N2216 SCPI Error -277 - Macro redefinition not allowed (see Error Number -277 on page 272)

-1074000874 N2216 SCPI Error -278 - Macro header not found (see Error Number -278 on page 272)

-1074000842 N2216 SCPI Error -310 - System error (see Error Number -310 on page 272)

-1074000841 N2216 SCPI Error -311 - Memory error (see Error Number -311 on page 272)

-1074000837 N2216 SCPI Error -315 - Configuration memory lost (see Error Number -315 on page 272)

-1074000831 N2216 SCPI Error -321 - Out of memory (see Error Number -321 on page 272)

-1074000822 N2216 SCPI Error -330 - Self-test failed (see Error Number -330 on page 272)

-1074000802 N2216 SCPI Error -350 - Queue overflow (see Error Number -350 on page 272)

-1074000752 N2216 SCPI Error -400 - Query error (see Error Number -400 on page 273)

-1074000742 N2216 SCPI Error -410 - Query INTERRUPTED (see Error Number -410 on page 273)

-1074000732 N2216 SCPI Error -420 - Query UNTERMINATED (see Error Number -420 on page 273)

Error Number Description

136

VXIplug&play Reference
VXIplug&play Library Errors

-1074000722 N2216 SCPI Error -430 - Query DEADLOCKED (see Error Number -430 on page 273)

-1074000712 N2216 SCPI Error -440 - Query UNTERMINATED after indefinite response (see Error Number -440 on
page 273)

-1074000672 N2216 Device Error Unknown

-1074000671 N2216 Device Error 6201 - Device not open (see Device Error 6201 on page 273)

-1074000670 N2216 Device Error 6202 - Device not ready (see Device Error 6202 on page 273)

-1074000669 N2216 Device Error 6203 - Device already open (see Device Error 6203 on page 273)

-1074000668 N2216 Device Error 6204 - Device incompatible (see Device Error 6204 on page 273)

-1074000667 N2216 Device Error 6205 - Device error (see Device Error 6205 on page 273)

-1074000666 N2216 Device Error 6206 - Session full (see Device Error 6206 on page 273)

-1074000665 N2216 Device Error 6207 - Session busy (see Device Error 6207 on page 273)

-1074000664 N2216 Device Error 6208 - Session empty (see Device Error 6208 on page 273)

-1074000663 N2216 Device Error 6209 - Sequence full (see Device Error 6209 on page 273)

-1074000662 N2216 Device Error 6210 - Sequence busy (see Device Error 6210 on page 273)

-1074000661 N2216 Device Error 6211 - Sequence empty (see Device Error 6211 on page 274)

-1074000660 N2216 Device Error 6212 - Local bus busy (see Device Error 6212 on page 274)

-1074000659 N2216 Device Error 6213 - Require even block count (see Device Error 6213 on page 274)

-1074000658 N2216 Device Error 6214 - Device timeout (see Device Error 6214 on page 274)

-1074000657 N2216 Device Error 6215 - Sequence bus error (see Device Error 6215 on page 274)

-1074000656 N2216 Device Error 6216 - Max safe disk temp exceeded (see Device Error 6216 on page 274)

-1074000655 N2216 Device Error 6217 - Write to a read-only device (see Device Error 6217 on page 274)

-1074000640 Not VXI

-1074000639 Mem allocation failure

-1074000638 NULL pointer detected

-1074000637 reset failed

-1074000636 An unexpected error occurred

-1074000635 ViSession (parmeter 1) was not created by this driver

-1074000634 String not found in table

-1074000633 Instrument Error Detected, call agn2216_error_query()

-1074000632 No SCSI devices found

-1074000631 Invalid SCSI device

-1074000630 Invalid file ID

-1074000629 Could not find a pair of SCSI devices

-1074000628 Too many files open

-1074000627 Thruput file not open

-1074000626 Playback scan too large for shared memory

Error Number Description

137

VXIplug&play Reference
VXIplug&play Library Errors

-1074000625 Read size too large for shared memory

-1074000624 Error reading N2216 status

-1074000623 Bad N2216 status

-1074000622 N2216 read error

-1074000621 N2216 write error

-1074000620 Can’t map N2216 shared RAM

-1074000619 Error reading N2216 throughput size

-1074000618 Error sending seq:cont

-1074000617 Record size too small

-1074000616 Record size not a 4 byte multiple

-1074000615 Record size exceeds file size

-1074000614 Playback scan too small

-1074000613 Playback scan not a 2 byte multiple

-1074000612 Read size too small

-1074000611 Read size not an element multiple

-1074000610 Volume not found

-1074000609 LIF directory not found

-1074000608 LIF directory entry not found

Error Number Description

138

VXIplug&play Reference
VXIplug&play Library Errors

Sequence Operations Reference

140

Sequence Operations Reference
Sequence Overview

Sequence Overview

What is a Sequence?

Sequence operations are your primary method of transferring data to or from Agilent
N2216A Sessions on either the Local Bus or the VXI System Bus. A Sequence is a list of
data transfer operations that are performed repeatedly until an entire throughput or
playback is complete. Throughput Sequences may contain operations that transfer data
from the Local and/or VXI Bus to a Session which consists of one or more SCSI devices.
Playback Sequences contain operations that transfer data from the Session to either the
Local or the VXI Bus, but not to both. Sequences may also contain synchronization and
control operations. See “Using the Agilent N2216A” starting on page 55 for an overview of
the Agilent N2216A and explanation of these terms.

Four Sequences may be defined in Sequence memory at any one time but only one can
run at a time. An individual Sequence may perform either throughput or playback
operations but throughput and playback operations may not be mixed in an individual
Sequence. The behavior of a Sequence is undefined if a throughput operation is requested
in a playback Sequence or vice versa. The behavior is also undefined if both VXI and
Local Bus playback operations are included in a Sequence.

How are Sequences and SCPI related?

Sequences are defined by SCPI commands but you may run them either independently or
within a SCPI program. You may notice that SCPI commands exist that may also be used
to throughput and playback data to the Agilent N2216A. In some cases, the data transfer
could be accomplished either with SCPI commands (MMEMory:SESSion:READ:* and
MMEMory:SESSion:WRITE:*) or with Sequence operations (Lbus Consume, Lbus
Generate, Throughput, and Playback). You will find that Sequences provide an easier way
(and in some cases the only way) to perform complex throughput and playback
operations.

It is best to use Sequences for nearly all throughput operations because of the ability of
Sequences to handle large data transfers and multiple devices. SCPI throughput
commands are limited to small amounts of data with a single device.

You may use either SCPI commands or Sequences to playback data that involves all of the
data from a Session. However, you must use Sequences for any playback operations that
involve only parts of the data (such as one channel from multiple-channel data).

141

Sequence Operations Reference
Sequence Overview

Creating Sequences

Adding Sequence elements

Sequences are defined by an instrument-specific SCPI subsystem. All the Sequence
operations documented in this chapter are implemented by using the SCPI command:

SEQuence[1|2|3|4]:ADD <Operation>,<Count>,<Address>,<Misc>

Each time this command is issued an element representing one operation is added to the
end of the Sequence queue in memory. The maximum number of operations in a single
sequence is 100.

It is normally more convenient to define Sequence operations programmatically, so that a
Sequence may be altered by changing the program and re-executing it. By creating a SCPI
program to define the Sequence, you will be able to alter the Sequence more easily.

If the Sequence number [1|2|3|4] is not specified the Sequence element is added to
Sequence 1.

Required fields

Every Sequence element requires that all four fields:
(<Operation>,<Count>,<Address>,<Misc>) be filled though not every operation
uses all fields. For some Sequence operations certain fields represent two pieces of
information as indicated in the Sequence operation descriptions.

The <Operation> field specifies what type of action will take place: data transfer,
synchronization, or control. This value corresponds to the code listed in the
programming reference section of this chapter for the specific type of operation.

The <Count> field is used by many operations to indicate how many units will be
transferred. The unit of <Count> may be either bytes or blocks, as indicated in the
description of each operation. For some Sequence operations this field represents two
pieces of information as indicated in the Sequence operation descriptions.

The <Address> field is used mainly by operations that transfer data over the VXI System
Bus. The value of <Address> is an offset from the beginning of one of the address
spaces. The Shared RAM space is local to the Agilent N2216A.

The miscellaneous <Misc> field has various meanings depending on the operation.

Accepted Field Values

Field values must be specified as numeric values. All decimal representations, including
signs, decimal points, and scientific notation are accepted as field values:

123, 123E2, -123, -1.23E2, .123, 1.23E-2, 1.23000E-01

Note, however, that negative numbers will generate an error and fractional values will be
automatically rounded to the nearest integer.

The fields may be specified in decimal, hex, octal, or binary:

123, #h7B, #q173, #b1111011

142

Sequence Operations Reference
Sequence Overview

Related SCPI commands

Other SCPI commands in addition to SEQuence:ADD that can or must be used with
relation to Sequence operations are documented in detail in the SCPI programming
section of this book. These commands include:

• MMEMory:SCSI, MMEMory:TUNit, and MMEMory:SESSion. These subsystems must
be used to initialize the Session before starting a Sequence.

• SEQuence:BEGin starts Sequence execution.

• SEQuence:DELete:ALL deletes all operations from the current Sequence list. This
command should be sent before adding elements to a Sequence.

• SEQuence:SIZE? returns the number of elements in the Sequence.

143

Sequence Operations Reference
Sequence Quick Reference

Sequence Quick Reference

Operation Code (hex) Count Address Misc Page

Control operations

Do Nothing 0000 N/A N/A N/A 148

Terminate Sequence 0001 N/A N/A N/A 149

Pause N msec 0002 Milliseconds N/A N/A 150

Pause N loops 000a Loops N/A N/A 159

Execute New Sequence 0004 Seq nbr N/A N/A 152

New Sequence If Count 0005 Seq nbr MSB LSB 153

TTLTRG Control 0003 Bit field N/A N/A 151

TTLTRG Arm 0006 Bit field N/A N/A 154

TTLTRG Wait 0007 Bit field N/A N/A 155

IRQ Arm 0008 Bit field N/A N/A 156

IRQ Wait 0009 Bit field N/A N/A 157

Test shared RAM and Skip 7000 N/A RAM address Skipped
Sequence Op’s

158

Local bus throughput operations

Lbus Eavesdrop 1001 Lbus blocks N/A Lbus width-
Bytes/block

161

Lbus Consume Pipe 1002 Blks pass
Blks consume

N/A Lbus width-
Bytes/block

162

Lbus Eavesdrop Pipe 1003 Blks pass
Blks eaves

N/A Lbus width-
Bytes/block

163

Lbus Consume Continuous 1100 Lbus blocks N/A Lbus width-
Bytes/block

164

Lbus Eavesdrop Continuous 1101 Lbus blocks N/A Lbus width-
Bytes/block

165

Lbus Consume Pipe Continuous 1102 Blks pass
Blks consume

N/A Lbus width-
Bytes/block

166

Lbus Eavesdrop Pipe Continuous 1103 Blks pass
Blks eaves

N/A Lbus width-
Bytes/block

167

144

Sequence Operations Reference
Sequence Quick Reference

Local bus playback operations

Lbus Generate 2000 Lbus blocks N/A Lbus width-
Bytes/block

168

Lbus Append 2001 Lbus blocks N/A Lbus width-
Bytes/block

169

VXI bus throughput operations

Throughput A16 Buff 16 3000 Transfer bytes A16 address N/A 170

Throughput A16 Buff D32 3002 Transfer bytes A16 address N/A 170

Throughput A24 Buff 16 3003 Transfer bytes A24 address N/A 170

Throughput A24 Buff D32 3005 Transfer bytes A24 address N/A 170

Throughput A32 Buff 16 3006 Transfer bytes A32 address N/A 170

Throughput A32 Buff D32 3008 Transfer bytes A32 address N/A 170

Throughput A16 FIFO 16 3009 Transfer bytes A16 address N/A 170

Throughput A16 FIFO 32 300A Transfer bytes A16 address N/A 170

Throughput A16 FIFO D32 300B Transfer bytes A16 address N/A 170

Throughput A24 FIFO 16 300C Transfer bytes A24 address N/A 170

Throughput A24 FIFO 32 300D Transfer bytes A24 address N/A 170

Throughput A24 FIFO D32 300E Transfer bytes A24 address N/A 170

Throughput A32 FIFO 16 300F Transfer bytes A32 address N/A 170

Throughput A32 FIFO 32 3010 Transfer bytes A32 address N/A 170

Throughput A32 FIFO D32 3011 Transfer bytes A32 address N/A 170

Throughput Shared RAM 3012 Transfer bytes RAM address N/A 170

Throughput Dummy Bytes 3100 Pad bytes N/A N/A 171

VXI bus playback operations

Playback A16 Buff 16 4000 Transfer bytes A16 address N/A 173

Playback A16 Buff D32 4002 Transfer bytes A16 address N/A 173

Playback A24 Buff 16 4003 Transfer bytes A24 address N/A 173

Playback A24 Buff D32 4005 Transfer bytes A24 address N/A 173

Playback A32 Buff 16 4006 Transfer bytes A32 address N/A 173

Playback A32 Buff D32 4008 Transfer bytes A32 address N/A 173

Playback A16 FIFO 16 4009 Transfer bytes A16 address N/A 173

Playback A16 FIFO 32 400A Transfer bytes A16 address N/A 173

Playback A16 FIFO D32 400B Transfer bytes A16 address N/A 173

Playback A24 FIFO 16 400C Transfer bytes A24 address N/A 173

Playback A24 FIFO 32 400D Transfer bytes A24 address N/A 173

Operation Code (hex) Count Address Misc Page

145

Sequence Operations Reference
Sequence Quick Reference

Playback A24 FIFO D32 400E Transfer bytes A24 address N/A 173

Playback A32 FIFO 16 400F Transfer bytes A32 address N/A 173

Playback A32 FIFO 32 4010 Transfer bytes A32 address N/A 173

Playback A32 FIFO D32 4011 Transfer bytes A32 address N/A 173

Playback Shared RAM 4012 Transfer bytes RAM address N/A 173

Playback Bit Bucket 4100 Discard bytes N/A N/A 174

Local bus throughput operations with monitor

Lbus Consume Monitor Shared RAM 5000 Lbus blocks RAM address Lbus width-
Bytes/block

175

Lbus Eavesdrop Monitor Shared RAM 5001 Lbus blocks RAM address Lbus width-
Bytes/block

175

Lbus Consume Pipe Monitor Shared RAM 5002 Blks pass
Blks consume

RAM address Lbus width-
Bytes/block

175

Lbus Eavesdrop Pipe Monitor Shared RAM 5003 Blks pass
Blks eaves

RAM address Lbus width-
Bytes/block

175

Lbus Consume Monitor A24 5014 Lbus blocks A24 address Lbus width-
Bytes/block

175

Lbus Eavesdrop Monitor A24 5015 Lbus blocks A24 address Lbus width-
Bytes/block

175

Lbus Consume Pipe Monitor A24 5016 Blks pass
Blks consume

A24 address Lbus width-
Bytes/block

175

Lbus Eavesdrop Pipe Monitor A24 5017 Blks pass
Blks eaves

A24 address Lbus width-
Bytes/block

175

VXI throughput operations with monitor

Throughput Shared RAM Monitor Shared RAM 3812 Monitor bytes RAM address RAM address 172

Throughput Shared RAM Monitor A24 Buff D32 3912 Monitor bytes RAM address A24 address 172

Throughput Shared RAM Monitor A24 Buff 3a12 Monitor bytes RAM address A24 address 172

Throughput A16 FIFO D32 Monitor Shared RAM 380b Monitor bytes A16 address RAM address 172

Throughput A16 FIFO D32 Monitor A24 Buff D32 390b Monitor bytes A16 address A24 address 172

Throughput A16 FIFO D32 Monitor A24 Buff 3a0b Monitor bytes A16 address A24 address 172

Throughput A16 FIFO16 Monitor Shared RAM 3809 Monitor bytes A16 address RAM address 172

Throughput A16 FIFO16 Monitor A24 Buff D32 3909 Monitor bytes A16 address A24 address 172

Throughput A16 FIFO16 Monitor A24 Buff 3a09 Monitor bytes A16 address A24 address 172

Throughput A16 Buff 16 Monitor Shared RAM 3800 Monitor bytes A16 address RAM address 172

Throughput A16 Buff 16 Monitor A24 BuffD32 3900 Monitor bytes A16 address A24 address 172

Throughput A16 Buff 16 Monitor A24 Buff 3a00 Monitor bytes A16 address A24 address 172

Throughput A16 Buff D32 Monitor Shared RAM 3802 Monitor bytes A16 address RAM address 172

Throughput A16 Buff D32 Monitor A24 Buff D32 3902 Monitor bytes A16 address A24 address 172

Operation Code (hex) Count Address Misc Page

146

Sequence Operations Reference
Sequence Quick Reference

Throughput A16 Buff D32 Monitor A24 Buff 3a02 Monitor bytes A16 address A24 address 172

Throughput A24 FIFO D32 Monitor Shared RAM 380e Monitor bytes A24 address RAM address 172

Throughput A24 FIFO D32 Monitor A24 Buff D32 390e Monitor bytes A24 address A24 address 172

Throughput A24 FIFO D32 Monitor A24 Buff 3a0e Monitor bytes A24 address A24 address 172

Throughput A24 FIFO 16 Monitor Shared RAM 380c Monitor bytes A24 address RAM address 172

Throughput A24 FIFO 16 Monitor A24 Buff D32 390c Monitor bytes A24 address A24 address 172

Throughput A24 FIFO 16 Monitor A24 Buff 3a0c Monitor bytes A24 address A24 address 172

Throughput A24 Buff 16 Monitor Shared RAM 3803 Monitor bytes A24 address RAM address 172

Throughput A24 Buff 16 Monitor A24 Buff D32 3903 Monitor bytes A24 address A24 address 172

Throughput A24 Buff 16 Monitor A24 Buff 3a03 Monitor bytes A24 address A24 address 172

Throughput A24 Buff D32 Monitor Shared RAM 3805 Monitor bytes A24 address RAM address 172

Throughput A24 Buff D32 Monitor A24 Buff D32 3905 Monitor bytes A24 address A24 address 172

Throughput A24 Buff D32 Monitor A24 Buff 3a05 Monitor bytes A24 address A24 address 172

Synchronization operations

Wait Bit Set A16 6000 Bit mask A16 address Loops 177

Wait Bit Clear A16 6001 Bit mask A16 address Loops 177

Wait Bit Set A24 6002 Bit mask A24 address Loops 177

Wait Bit Clear A24 6003 Bit mask A24 address Loops 177

Wait Bit Set A32 6004 Bit mask A32 address Loops 177

Wait Bit Clear A32 6005 Bit mask A32 address Loops 177

Wait Bit Set Shared RAM 6006 Bit mask RAM address Loops 177

Wait Bit Clear Shared RAM 6007 Bit mask RAM address Loops 177

Wait A16 Count 16 6008 16-bit value A16 address Loops 178

Wait A24 Count 16 6009 16-bit value A24 address Loops 178

Wait A32 Count 16 600A 16-bit value A32 address Loops 178

Wait Count Shared RAM 16 600B 16-bit value RAM address Loops 178

Wait A16 Count 32 600C 32-bit value A16 address Loops 178

Wait A24 Count 32 600D 32-bit value A24 address Loops 178

Wait A32 Count 32 600E 32-bit value A32 address Loops 178

Wait Count Shared RAM 32 600F 32-bit value RAM address Loops 178

Wait FIFO Empty 6010 N/A N/A N/A 179

Wait FIFO Half Empty 6011 N/A N/A N/A 179

Control A16 Reg16 6018 N/A A16 address Value 180

Control A24 Reg16 6019 N/A A24 address Value 180

Control A32 Reg16 601A N/A A32 address Value 180

Operation Code (hex) Count Address Misc Page

147

Sequence Operations Reference
Sequence Quick Reference

Control Reg Shared RAM 16 601B N/A RAM address Value 180

Control A16 Reg 32 601C N/A A16 address Value 180

Control A24 Reg 32 601D N/A A24 address Value 180

Control A32 Reg 32 601E N/A A32 address Value 180

Control Reg Shared RAM 32 601F N/A RAM address Value 180

Dump A24 Seq Bytes 6020 N/A A24 address N/A 181

Dump A32 Seq Bytes 6021 N/A A32 address N/A 181

Dump Shared RAM Seq Bytes 6022 N/A RAM address N/A 181

Operation Code (hex) Count Address Misc Page

148

Sequence Operations Reference
Agilent N2216A Sequence Operations

Agilent N2216A Sequence Operations

Do Nothing 0000

No Sequence operation is performed.

Sequence Syntax: #h0000,<Count>,<Address>,<Misc>

<Count> ::= 0

<Address> ::= 0

<Misc> ::= 0

SCPI example: SEQ:ADD #h0000,0,0,0

Description: No fields are used.

149

Sequence Operations Reference
Agilent N2216A Sequence Operations

Terminate Sequence 0001

The Sequence stops executing.

Sequence Syntax: #h0001,<Count>,<Address>,<Misc>

<Count> ::= 0

<Address> ::= 0

<Misc> ::= 0

SCPI example: SEQ:ADD #h0001,0,0,0

Description: This operation terminates the Sequence even if the final count has not been met. This is
useful only for creating a non-looping or one-time Sequence. No fields are used.

150

Sequence Operations Reference
Agilent N2216A Sequence Operations

Pause N msec 0002

The Sequence stops executing for a designated period of time.

Sequence Syntax: #h0002,<Count>,<Address>,<Misc>

<Count> ::= 10:4294967295

<Address> ::= 0

<Misc> ::= 0

SCPI example: SEQ:ADD #h0002,40,0,0

Description: This operation causes the Sequence to stop executing for the number of milliseconds
designated by <Count>. The resolution of the clock is only 10 ms, therefore the specified
count is rounded to the nearest 10 ms value. For a pause of shorter duration see “Pause N
loops” on page 159.

<Address> and <Misc> are not used.

151

Sequence Operations Reference
Agilent N2216A Sequence Operations

TTLTRG Control 0003

Controls the assertion of the TTLTRG lines.

Sequence Syntax: #h0003,<Count>,<Address>,<Misc>

<Count> ::= 0:#b11111111

<Address> ::= 0

<Misc> ::= 0

SCPI example: SEQ:ADD #h0003,#b1010101,0,0

Description: All TTLTRG lines are controlled simultaneously. Therefore, one (or more) lines may be
set while all others are cleared. Any bits set to 1 in bits 0-7 of <Count> represent
corresponding TTLTRG lines that are asserted.

<Address> and <Misc> are not used.

See “TTLTRG Arm” on page 154 and “TTLTRG Wait” on page 155.

152

Sequence Operations Reference
Agilent N2216A Sequence Operations

Execute New Sequence 0004

Begins executing a new logical Sequence.

Sequence Syntax: #h0004,<Count>,<Address>,<Misc>

<Count> ::= 1:4

<Address> ::= 0

<Misc> ::= 0

SCPI example: SEQ:ADD #h0004,3,0,0

Description: This operation begins executing the new logical Sequence specified by <Count>. The
new Sequence inherits the Sequence type and total bytes remaining from the currently
executing Sequence. This operation is useful in situations that require a one-time set of
operations at the beginning of a throughput followed by a looping set of data acquisition
operations. An example of such a one-time action is writing a header at the beginning of a
data stream.

<Address> and <Misc> are not used.

153

Sequence Operations Reference
Agilent N2216A Sequence Operations

New Sequence If Count 0005

Begins executing a new logical Sequence if the remaining byte count is less than the value
specified.

Sequence Syntax: #h0005,<Count>,<Address>,<Misc>

<Count> ::= 1:4

<Address> ::= 0:#hFFFFFFFF

<Misc> ::= 0:#hFFFFFFFF

SCPI example: SEQ:ADD #h0005,2,#hAEC,#h33E1F671

Description: This operation begins executing the new logical Sequence number specified by <Count>
if the remaining byte count is less than that specified by <Address> and <Misc>. Since
the byte count is a 64-bit value and the Sequence fields are only 32-bit values, both the
<Address> and <Misc> are used to specify the byte count. The most significant 32 bits
are specified in the <Address> field and the least significant 32 bits are specified in the
<Misc> field. The new Sequence inherits the Sequence type and total bytes remaining
from the currently executing Sequence.

154

Sequence Operations Reference
Agilent N2216A Sequence Operations

TTLTRG Arm 0006

Clears a set of latched TTLTRG assertions.

Sequence Syntax: #h0006,<Count>,<Address>,<Misc>

<Count> ::= 0:#b11111111

<Address> ::= 0

<Misc> ::= 0

SCPI example: SEQ:ADD #h0006,#b11011101,0,0

Description: Clearing latched TTLTRG assertions guarantees that any subsequent TTLTRG Wait will
not be satisfied by an old latched TTLTRG assertion. Any bits set to 1 in bits 0-7 of
<Count> clear assertions for corresponding to TTLTRG lines. The diagram below
illustrates the effect of TTLTRG Arm and TTLTRG Wait on triggering in response to
TTLTRG line assertion:

A perceived exception occurs if the trigger line is already asserted (set to the low voltage
level) when the TTLTRG arm command is issued. In this case, a subsequent TTLTRG Wait
will result in no delay because the assertion requirement was previously fulfilled by the
interrupt generated prior to TTLTRG Arm:

<Address> and <Misc> are not used.

See “TTLTRG Control” on page 151 and “TTLTRG Wait” on page 155.

155

Sequence Operations Reference
Agilent N2216A Sequence Operations

TTLTRG Wait 0007

Waits for a set of TTLTRG lines to be asserted.

Sequence Syntax: #h0007,<Count>,<Address>,<Misc>

<Count> ::= 0:#b11111111

<Address> ::= 0

<Misc> ::= 0

SCPI example: SEQ:ADD #h0007,#b10101010,0,0

Description: Because TTLTRG assertions are latched, it is not necessary that all of the specified lines
be set at the same time; only that each specified line undergo an unasserted-to-asserted
transition since the last TTLTRG Wait or TTLTRG Arm operation. Any bits set to 1 in bits
0-7 of <Count> represent corresponding TTLTRG lines that await assertion.

<Address> and <Misc> are not used.

See “TTLTRG Control” on page 151 and “TTLTRG Arm” on page 154.

156

Sequence Operations Reference
Agilent N2216A Sequence Operations

IRQ Arm 0008

Clears a set of latched IRQ assertions from a specified logical address.

Sequence Syntax: #h0008,<Count>,<Address>,<Misc>

<Count> ::= 0:255

<Address> ::= 0

<Misc> ::= 0

SCPI example: SEQ:ADD #h0008,86,0,0

Description: Clearing latched IRQ assertions guarantees that any subsequent IRQ Wait will not be
satisfied by an old latched IRQ assertion. The <Count> field indicates the logical address
for which the latched IRQ should be cleared.

<Address> and <Misc> are not used.

157

Sequence Operations Reference
Agilent N2216A Sequence Operations

IRQ Wait 0009

Waits for IRQ from a specific logical address.

Sequence Syntax: #h0009,<Count>,<Address>,<Misc>

<Count> ::= 1:255

<Address> ::= 0

<Misc> ::= 0

SCPI example: SEQ:ADD #h0009,222,0,0

Description: When a VXI system is configured, each IRQ line is assigned an IRQ Handler. The IRQ
Handler may be any device that supports this capability. In order for the Agilent N2216A
to proceed after executing the IRQ Wait Sequence operation, it must receive an IRQ from
the specific logical address on any IRQ line for which it has been assigned as IRQ Handler.
See the documentation for your VXI Resource Manager to determine how to assign IRQ
Handlers.

<Address> and <Misc> are not used.

158

Sequence Operations Reference
Agilent N2216A Sequence Operations

Test shared RAM and Skip 7000

Execute the next sequence operation if a shared RAM location is non-zero.

Sequence Syntax: #h7000,<Count>,<Address>,<Misc>

<Count> ::= 0

Shared RAM <Address> ::= 0:262142

<Misc> ::= 0:100

SCPI example: SEQ:ADD #h7000,0,0,1

Description: Read a 16-bit value at the specified shared RAM <address>. If the value read is zero, skip
the next <misc> number of sequence operations. If the value read is non-zero, set the 16-
bit value in shared RAM to zero and execute the next sequence operation.

159

Sequence Operations Reference
Agilent N2216A Sequence Operations

Pause N loops 000a

The Sequence stops executing for a designated number of loops.

Sequence Syntax: #h0002,<Count>,<Address>,<Misc>

<Count> ::= 1:4294967295

<Address> ::= 0

<Misc> ::= 0

SCPI example: SEQ:ADD #h000a,10,0,0

Description: This operation causes the Sequence to execute a delay loop for the number of repetitions
designated by <Count>. This operation may be used to pause a Sequence for a shorter
duration of time than may be achieved with the ‘Pause N milliseconds’ (0002) operation
for which the minimum time is 10 milliseconds. A <Count> of 1560927 results in a delay
of � 1 second. The actual delay time may be longer due to the unpredictable nature of
interrupts.

<Address> and <Misc> are not used.

160

Sequence Operations Reference
Agilent N2216A Sequence Operations

Lbus Consume 1000

A throughput operation that reads blocks of data from the local bus and writes them to a
SCSI Session.

Sequence Syntax: #h1000,<Count>,<Address>,<Misc>

<Count> ::= 1:256

<Address> ::= 0

<Misc> ::= 0:3 #h10:#hFFFF (see description below)

SCPI example: SEQ:ADD #h1000,8,0,#h03000800

Description: The Lbus Consume operation puts the local bus chip into a mode that acts as a sink for
bytes on the local bus. In other words, no bytes are passed to the next module to the
right.

<Count> indicates the number of local bus blocks to transfer.

<Address> is not used.

<Misc> contains two pieces of information: the lower 24 bits indicate the number of bytes
in a local bus block; the upper 8 bits indicate the local bus width. The value indicating the
local bus width is presented as the number of bytes minus 1:

The bytes-per-block value is used to decrement the bytes-remaining count, thus
determining when the final Sequence count has been met. The number of bytes per block
must be specified correctly for the Sequence to terminate properly.

Bits 24-31 of Misc parameter Bits 0-23 of Misc parameter

A local bus width of: Is represented by a
parameter value of: This value represents the number of bytes in a local bus block. Every

local bus block is assumed to be the same size and equal to the count
specified here.

8 0

16 1

24 2

32 3

161

Sequence Operations Reference
Agilent N2216A Sequence Operations

Lbus Eavesdrop 1001

A throughput operation that reads blocks of data from the local bus and writes them to a
SCSI Session in addition to passing them along to the next local bus module to the right.

Sequence Syntax: #h1001,<Count>,<Address>,<Misc>

<Count> ::= 1:256

<Address> ::= 0

<Misc> ::= 0:3 #h10:#hFFFF (see description below)

SCPI example: SEQ:ADD #h1001,2,0,#h3004000

Description: The Lbus Eavesdrop operation puts the local bus chip into a mode in which each byte
received from the module to the left is copied into the Agilent N2216A and is also passed
to the next module to the right.

<Count> indicates the number of local bus blocks to transfer.

<Address> is not used.

<Misc> contains two pieces of information: the lower 24 bits indicate the number of bytes
in a local bus block; the upper 8 bits indicate the local bus width. The value indicating the
local bus width is presented as the number of bytes minus 1:

The bytes-per-block value is used to decrement the bytes-remaining count, thus
determining when the final Sequence count has been met. The number of bytes per block
must be specified correctly for the Sequence to terminate properly.

Bits 24-31of Misc parameter Bits 0-23 o Misc parameter

A local bus width of: Is represented by a
parameter value of: This value represents the number of bytes in a local bus block. Every

local bus block is assumed to be the same size and equal to the count
specified here.

8 0

16 1

24 2

32 3

162

Sequence Operations Reference
Agilent N2216A Sequence Operations

Lbus Consume Pipe 1002

A throughput operation that writes some blocks of local bus data to a SCSI Session while
passing other blocks of local bus data to the next module to the right.

Sequence Syntax: #h1002,<Count>,<Address>,<Misc>

<Count> ::= 1:256 1:256 (see description below)

<Address> ::= 0

<Misc> ::= 0:3 #h10:#hFFFF (see description below)

SCPI example: SEQ:ADD #h1002,#h40002,0,#h3008000

Description: The Lbus Consume Pipe operation reads N blocks of data from the local bus and writes
them to a SCSI Session then passes M blocks to the next module to the right without
copying those bytes to the Agilent N2216A. This operation is used for high data rate
applications that require multiple Agilent N2216A modules.

<Count> has the dual purpose of specifying both the number of blocks to pass (M) as well
as the number of blocks to consume(N). This is accomplished by placing M in the most
significant 16 bits of the <Count> field and N in the least significant 16 bits of the <Count>
field. M and N must have a greatest common denominator (cd) of � 256 where the largest
of M/cd and N/cd is � 16.

<Address> is not used.

<Misc> also contains two pieces of information: the lower 24 bits indicate the number of
bytes in a local bus block. The upper 8 bits indicate the local bus width. The value
indicating the local bus width is presented as the number of bytes minus 1:

The bytes-per-block value is used to decrement the bytes-remaining count, thus
determining when the final Sequence count has been met. The number of bytes per block
must be specified correctly for the Sequence to terminate properly.

Bits 24-31of Misc parameter Bits 0-23 of Misc parameter

A local bus width of: Is represented by a
parameter value of: This value represents the number of bytes in a local bus block. Every

local bus block is assumed to be the same size and equal to the count
specified here.

8 0

16 1

24 2

32 3

163

Sequence Operations Reference
Agilent N2216A Sequence Operations

Lbus Eavesdrop Pipe 1003

A throughput operation that writes some blocks of local bus data to a SCSI Session while
passing those blocks plus additional blocks of local bus data to the next module to the
right.

Sequence Syntax: #h1003,<Count>,<Address>,<Misc>

<Count> ::= 1:256 1:256 (see description below)

<Address> ::= 0

<Misc> ::= 0:3 #h10:#hFFFF (see description below)

SCPI example: SEQ:ADD #h1003,#h20001,0,#h03004000

Description: The Lbus Eavesdrop Pipe operation reads N blocks of data from the local bus, writes
them to a SCSI Session, and also passes them to the next module to the right. The
operation then passes M blocks to the next module to the right without copying them to
the Agilent N2216A. This operation is used for high data rate applications that require
multiple Agilent N2216A modules.

<Count> has the dual purpose of specifying both the number of blocks to pass (M) as well
as the number of blocks to Eavesdrop (N). This is accomplished by placing M in the most
significant 16 bits of the <Count> field and N in the least significant 16 bits of the <Count>
field. M and N must have a greatest common denominator (cd) of � 256 where the largest
of M/cd and N/cd is � 16.

<Address> is not used.

<Misc> also contains two pieces of information: the lower 24 bits indicate the number of
bytes in a local bus block; the upper 8 bits indicate the local bus width. The value
indicating the local bus width is presented as the number of bytes minus 1:

The bytes-per-block value is used to decrement the bytes-remaining count, thus
determining when the final Sequence count has been met. The number of bytes per block
must be specified correctly for the Sequence to terminate properly.

Bits 24-31 of Misc parameter Bits 0-23 Misc parameter

A local bus width of: Is represented by a
parameter value of: This value represents the number of bytes in a local bus block. Every

local bus block is assumed to be the same size and equal to the count
specified here.

8 0

16 1

24 2

32 3

164

Sequence Operations Reference
Agilent N2216A Sequence Operations

Lbus Consume Continuous 1100

A throughput operation that reads blocks of data from the local bus and writes them to a
SCSI Session.

Sequence Syntax: #h1100,<Count>,<Address>,<Misc>

<Count> ::= 1:256

<Address> ::= 0

<Misc> ::= 0:3 #h10:#hFFFF (see description below)

SCPI example: SEQ:ADD #h1100,8,0,#h03000800

Description: The Lbus Consume operation puts the local bus chip into a mode that acts as a sink for
bytes on the local bus. In other words, no bytes are passed to the next module to the
right.

<Count> indicates the number of local bus blocks to transfer.

<Address> is not used.

<Misc> contains two pieces of information: the lower 24 bits indicate the number of bytes
in a local bus block; the upper 8 bits indicate the local bus width. The value indicating the
local bus width is presented as the number of bytes minus 1:

The bytes-per-block value is used to decrement the bytes-remaining count, thus
determining when the final Sequence count has been met. The number of bytes per block
must be specified correctly for the Sequence to terminate properly.

Note This operation stops executing only when the sequence terminates.

Bits 24-31 of Misc parameter Bits 0-23 Misc parameter

A local bus width of: Is represented by a
parameter value of: This value represents the number of bytes in a local bus block. Every

local bus block is assumed to be the same size and equal to the count
specified here.

8 0

16 1

24 2

32 3

165

Sequence Operations Reference
Agilent N2216A Sequence Operations

Lbus Eavesdrop Continuous 1101

A throughput operation that reads blocks of data from the local bus and writes them to a
SCSI Session in addition to passing them along to the next local bus module to the right.

Sequence Syntax: #h1101,<Count>,<Address>,<Misc>

<Count> ::= 1:256

<Address> ::= 0

<Misc> ::= 0:3 #h10:#hFFFF (see description below)

SCPI example: SEQ:ADD #h1101,2,0,#h3004000

Description: The Lbus Eavesdrop operation puts the local bus chip into a mode in which each byte
received from the module to the left is copied into the Agilent N2216A and is also passed
to the next module to the right.

<Count> indicates the number of local bus blocks to transfer.

<Address> is not used.

<Misc> contains two pieces of information: the lower 24 bits indicate the number of bytes
in a local bus block; the upper 8 bits indicate the local bus width. The value indicating the
local bus width is presented as the number of bytes minus 1:

The bytes-per-block value is used to decrement the bytes-remaining count, thus
determining when the final Sequence count has been met. The number of bytes per block
must be specified correctly for the Sequence to terminate properly.

Note This operation stops executing only when the sequence terminates.

Bits 24-31of Misc parameter Bits 0-23 of Misc parameter

A local bus width of: Is represented by a
parameter value of: This value represents the number of bytes in a local bus block. Every

local bus block is assumed to be the same size and equal to the count
specified here.

8 0

16 1

24 2

32 3

166

Sequence Operations Reference
Agilent N2216A Sequence Operations

Lbus Consume Pipe Continuous 1102

A throughput operation that writes some blocks of local bus data to a SCSI Session while
passing other blocks of local bus data to the next module to the right.

Sequence Syntax: #h1102,<Count>,<Address>,<Misc>

<Count> ::= 1:256 1:256 (see description below)

<Address> ::= 0

<Misc> ::= 0:3 #h10:#hFFFF (see description below)

SCPI example: SEQ:ADD #h1102,#h40002,0,#h3008000

Description: The Lbus Consume Pipe operation reads N blocks of data from the local bus and writes
them to a SCSI Session then passes M blocks to the next module to the right without
copying those bytes to the Agilent N2216A. This operation is used for high data rate
applications that require multiple Agilent N2216A modules.

<Count> has the dual purpose of specifying both the number of blocks to pass (M) as well
as the number of blocks to consume(N). This is accomplished by placing M in the most
significant 16 bits of the <Count> field and N in the least significant 16 bits of the <Count>
field. M and N must have a greatest common denominator (cd) of � 256 where the largest
of M/cd and N/cd is � 16.

<Address> is not used.

<Misc> also contains two pieces of information: the lower 24 bits indicate the number of
bytes in a local bus block. The upper 8 bits indicate the local bus width. The value
indicating the local bus width is presented as the number of bytes minus 1:

The bytes-per-block value is used to decrement the bytes-remaining count, thus
determining when the final Sequence count has been met. The number of bytes per block
must be specified correctly for the Sequence to terminate properly.

Note This operation stops executing only when the sequence terminates.

Bits 24-31of Misc parameter Bits 0-23 of Misc parameter

A local bus width of: Is represented by a
parameter value of: This value represents the number of bytes in a local bus block. Every

local bus block is assumed to be the same size and equal to the count
specified here.

8 0

16 1

24 2

32 3

167

Sequence Operations Reference
Agilent N2216A Sequence Operations

Lbus Eavesdrop Pipe Continuous 1103

A throughput operation that writes some blocks of local bus data to a SCSI Session while
passing those blocks plus additional blocks of local bus data to the next module to the
right.

Sequence Syntax: #h1103,<Count>,<Address>,<Misc>

<Count> ::= 1:256 1:256 (see description below)

<Address> ::= 0

<Misc> ::= 0:3 #h10:#hFFFF (see description below)

SCPI example: SEQ:ADD #h1103,#h20001,0,#h03004000

Description: The Lbus Eavesdrop Pipe operation reads N blocks of data from the local bus, writes
them to a SCSI Session, and also passes them to the next module to the right. The
operation then passes M blocks to the next module to the right without copying them to
the Agilent N2216A. This operation is used for high data rate applications that require
multiple Agilent N2216A modules.

<Count> has the dual purpose of specifying both the number of blocks to pass (M) as well
as the number of blocks to Eavesdrop (N). This is accomplished by placing M in the most
significant 16 bits of the <Count> field and N in the least significant 16 bits of the <Count>
field. M and N must have a greatest common denominator (cd) of � 256 where the largest
of M/cd and N/cd is � 16.

<Address> is not used.

<Misc> also contains two pieces of information: the lower 24 bits indicate the number of
bytes in a local bus block; the upper 8 bits indicate the local bus width. The value
indicating the local bus width is presented as the number of bytes minus 1:

The bytes-per-block value is used to decrement the bytes-remaining count, thus
determining when the final Sequence count has been met. The number of bytes per block
must be specified correctly for the Sequence to terminate properly.

Note This operation stops executing only when the sequence terminates.

Bits 24-31 of Misc parameter Bits 0-23 of Misc parameter

A local bus width of: Is represented by a
parameter value of: This value represents the number of bytes in a local bus block. Every

local bus block is assumed to be the same size and equal to the count
specified here.

8 0

16 1

24 2

32 3

168

Sequence Operations Reference
Agilent N2216A Sequence Operations

Lbus Generate 2000

A playback operation that reads blocks of data from a SCSI Session then writes them to
the local bus.

Sequence Syntax: #h2000,<Count>,<Address>,<Misc>

<Count> ::= 1:256

<Address> ::= 0

<Misc> ::= 0:3 #h10:#hFFFC (see description below)

SCPI example: SEQ:ADD #h2000,16,0,#h03000c00

Description: The Lbus Generate operation causes data to flow from the SCSI Session to the next
module to the right of the Agilent N2216A. This operation can only be used for local bus
playback Sequences.

<Count> indicates the number of local bus blocks to transfer.

<Address> is not used.

<Misc> contains two pieces of information: the lower 24 bits indicate the number of bytes
in a local bus block; the upper 8 bits indicate the local bus width. The value indicating the
local bus width is presented as the number of bytes minus 1:

A block marker is asserted on the local bus following every block-size number of bytes. A
frame marker is placed following the last block written to the local bus by this Sequence
operation.

Bits 24-31 of Misc parameter Bits 0-23 of Misc parameter

A local bus width of: Is represented by a
parameter value of: This value represents the number of bytes in a local bus block and

must be a multiple of 4. Every local bus block is assumed to be the
same size and equal to the count specified here.

8 0

16 1

24 2

32 3

169

Sequence Operations Reference
Agilent N2216A Sequence Operations

Lbus Append 2001

A playback operation that reads blocks of data from a SCSI Session then appends them to
the local bus stream of blocks.

Sequence Syntax: #h2001,<Count>,<Address>,<Misc>

<Count> ::= 1:256

<Address> ::= 0

<Misc> ::= 0:3 #h10:#hFFFC (see description below)

SCPI example: SEQ:ADD #h2001,4,0,#h03000800

Description: The Lbus Append operation causes data to flow from the SCSI Session and appends the
data to the end of an Lbus frame as it passes to the next module to the right of the Agilent
N2216A. This operation can only be used for local bus playback Sequences.

<Count> indicates the number of local bus blocks to transfer.

<Address> is not used.

<Misc> contains two pieces of information: the lower 24 bits indicate the number of bytes
in a local bus block; the upper 8 bits indicate the local bus width. The value indicating the
local bus width is presented as the number of bytes minus 1:

A block marker is asserted on the local bus following every block-size number of bytes. A
frame marker is placed following the last block written to the local bus by this Sequence
operation.

Bits 24-31 of Misc parameter Bits 0-23 of Misc parameter

A local bus width of: Is represented by a
parameter value of: This value represents the number of bytes in a local bus block and

must be a multiple of 4. Every local bus block is assumed to be the
same size and equal to the count specified here.

8 0

16 1

24 2

32 3

170

Sequence Operations Reference
Agilent N2216A Sequence Operations

Throughput A16 Buff 16 -

Throughput Shared RAM 3000-3012

Throughput operations that writes data from a memory buffer or FIFO to a SCSI Session.

Sequence Syntax: #h3000,<Count>,<Address>,<Misc>

through

#h3012,<Count>,<Address>,<Misc>

<Count> ::= 4:#hFFFFFFFC

A16 <Address> ::= 0:#hFFFE

A24 <Address> ::= 0:#hFFFFFE

A32 <Address> ::= 0:#hFFFFFFFE

Shared RAM <Address> ::= 0:262144

<Misc> ::= 0

SCPI example: SEQ:ADD #h300B,#h10000,#hD420,0

Notes: See “Sequence Quick Reference” on page 143 for a list of all 16 operations included in this
description.

Description: This description covers 16 operations for which some essential properties are indicated in
the operation name. Buff indicates a memory buffer whereas FIFO refers to reading from
the same address as if reading from a FIFO. The buffer or FIFO corresponds to the
address space specified in the name: A16, A24, A32, or Shared RAM. The last part of the
operation name refers to an access type: a 16-bit access, a 32-bit access implemented as
two 16-bit accesses, or a D32 access. The D32 access applies only to devices that support
D32. Shared RAM is always accessed as a 16-bit buffer.

<Count> designates the number of bytes to transfer and must be a multiple of 4.

<Address> designates an offset in the specified memory space (A16, A24, A32, or Shared
RAM) at which memory will be accessed. The value must be a multiple of 2.

<Misc> is not used.

171

Sequence Operations Reference
Agilent N2216A Sequence Operations

Throughput Dummy Bytes 3100

A throughput operation that places dummy bytes in the data stream.

Sequence Syntax: #h3100,<Count>,<Address>,<Misc>

<Count> ::= 0:#hFFFFFFFC

<Address> ::= 0

<Misc> ::= 0

SCPI example: SEQ:ADD #h3100,#h10000,0,0

Description: This operation is used to add padding to certain data structures in the data stream to
make it compatible with some post-processing programs that expect data in a certain
location.

<Count> designates the number of dummy bytes to place in the data stream and must be
a multiple of 4.

<Address> and <Misc> fields are not used.

172

Sequence Operations Reference
Agilent N2216A Sequence Operations

Throughput Shared RAM Monitor Shared RAM -

Throughput A24 Buff D32 Monitor A24 Buff 3812-3a05

Throughput operations that perform a VXI bus throughput to a Session while providing a
means for the host computer to monitor the data.

Sequence Syntax: #h3812,<Count>,<Address>,<Misc>

through

#h3a05,<Count>,<Address>,<Misc>

<Count> ::= 4:#hFFFFFFFF

A16 <Address> ::= 0:#hFFFF

A24 <Address> ::= 0:#hFFFFFF

Shared RAM <Address> ::= 0:262144

A24 <Misc> ::= 0:#hFFFFFF

Shared RAM <Misc> ::= 0:262144

SCPI example: SEQ:ADD #h3a00,#h200,#h400,#h8000

Note: See “Sequence Quick Reference” on page 143 for a list of all 27 operations included in this
description.

Description: This description covers 27 operations for which some essential properties are indicated in
the operation name:

The address location indicated in the operation name before the word ‘Monitor’
represents the memory location from which to draw data. The address location indicated
in the operation name after the word ‘Monitor’ represents the memory location to which
to monitor data.

Buff indicates a memory buffer whereas FIFO refers to reading from the same address as
if reading from a FIFO. The buffer or FIFO corresponds to the address space specified in
the name: A16, A24, A32, or Shared RAM.

<Count> is the number of bytes to monitor

<Address> is the VXI address from which to read data.

<Misc> is the VXI address to which to monitor data

173

Sequence Operations Reference
Agilent N2216A Sequence Operations

Playback A16 Buff 16 -

Playback Shared RAM 4000-4012

Playback operations that write data from a SCSI Session to a memory buffer or FIFO.

Sequence Syntax: #h4000,<Count>,<Address>,<Misc>

through

#h4012,<Count>,<Address>,<Misc>

<Count> ::= 4:#hFFFFFFFC

A16 <Address> ::= 0:#hFFFE

A24 <Address> ::= 0:#hFFFFFE

A32 <Address> ::= 0:#hFFFFFFFE

Shared RAM <Address> ::= 0:262144

<Misc> ::= 0

SCPI example: SEQ:ADD #h400B,#h10000,#hD420,0

Note: See “Sequence Quick Reference” on page 143 for a list of all 16 operations included in this
description.

Description: This description covers 16 operations for which some essential properties are indicated in
the operation name. Buff indicates a memory buffer whereas FIFO refers to writing to the
same address as if writing to a FIFO. The buffer or FIFO corresponds to the address
space specified in the name: A16, A24, A32, or Shared RAM. The last part of the operation
name refers to an access type: a 16-bit access, a 32-bit access implemented as two 16-bit
accesses, or a D32 access. Shared RAM is always accessed as a 16-bit buffer.

<Count> designates the number of bytes to transfer and must be a multiple of 4.

<Address> indicates an offset in the specified memory space (A16, A24, A32, or Shared
RAM) at which memory will be accessed. This value must be a multiple of 2.

<Misc> is not used.

174

Sequence Operations Reference
Agilent N2216A Sequence Operations

Playback Bit Bucket 4100

A playback operation that discards bytes from the data stream.

Sequence Syntax: #h4100,<Count>,<Address>,<Misc>

<Count> ::= 4:#hFFFFFFFC

<Address> ::= 0

<Misc> ::= 0

SCPI example: SEQ:ADD #h4100,#h10000,0,0

Description: This operation can be used to playback a single channel from a multiple-channel
throughput.

<Count> designates the number bytes to discard and must be a multiple of 4.

<Address> and <Misc> are not used.

175

Sequence Operations Reference
Agilent N2216A Sequence Operations

Lbus Consume Monitor Shared RAM -

Lbus Eavesdrop Pipe Monitor A24 5000-5017

Throughput operations that perform a local bus throughput to a Session while providing a
means for the host computer to monitor the data via the VXI system bus.

Sequence Syntax: #h5000,<Count>,<Address>,<Misc>

through

#h5017,<Count>,<Address>,<Misc>

Monitor <Count> ::= 1:256

Pipe Monitor <Count> ::= 1:256 1:256 (see description below)

A24 <Address> ::= 0:#hFFFFFF

Shared RAM <Address> ::= 0:262144

<Misc> ::= 0:3 #h10:#hFFFF (see description below)

SCPI example: SEQ:ADD #h5016,#h100004,#h400000,#h3008000

Note: See “Sequence Quick Reference” on page 143 for a list of all 8 operations included in this
description.

Description: This description covers 8 operations for which some essential properties are indicated in
the operation name:

• The part of the name preceding ‘Monitor’ indicates the type of throughput operation
and the description corresponds to the description for the same type of operation
described earlier in local bus throughput operations.

• In addition, the part of the name following ‘Monitor’ indicates the address space to
which the data will be monitored (Monitor Shared RAM or Monitor A24).

The following considerations apply to throughput operations with a Monitor:

• All monitored data is passed into a memory buffer, not into a FIFO.

• All monitoring to Shared RAM is performed via D16 accesses.

• The A16 and A32 address spaces are not supported for monitoring.

• D32 monitoring is not available.

<Count> and <Misc> for monitoring are the same as the <Count> and <Misc> fields for
the corresponding local bus throughput operations (1000-1003) described earlier.

<Address> indicates an offset in the specified memory space (A24 or Shared RAM). The
memory block at the offset specified in the address space is 4 bytes larger than the local
bus block size multiplied by the number of local bus blocks.

The following tips are applicable to running Sequences using Monitor:

• The act of monitoring a local bus transfer slows down the overall throughput rate
because data must be copied to RAM, which would not otherwise be done. The more
data monitored, the slower the maximum throughput rate.

• You must specify all local bus blocks that are to be monitored before running the
Sequence. Once the Sequence is running, it is not possible to change which blocks to
monitor.

176

Sequence Operations Reference
Agilent N2216A Sequence Operations

• Flags are used to synchronize the host and the Agilent N2216A for monitor operations.
The flags are represented by the first 4 bytes of the memory to which Monitor data is
being written, beginning at the address specified in that memory (A24 or Shared
RAM). You must initialize all the flag values before running the Sequence. The flag is
used to indicate the presence of data in the Monitor block. When the flag is 0 the
Agilent N2216A will write data into the block and set the flag to 1. It is expected that
the host (or controller) will read the data and then set the flag to 0. If the monitor
operation is executed with the flag non-zero, the memory copy will not be done, but
the data will flow through the normal data stream to the SCSI Session. This allows the
host to read data at a different rate than the actual acquisition of data without
affecting the throughput rate. In fact, throughputs will be faster when the flag is set
because the memory copy will not need to be done.

The intention for monitoring many channels is that there will be a Sequence operation
to monitor one block for each of the many channels. The flag values will initially be
set to non-zero which means that no data will be copied to memory. As you decide to
monitor different local bus blocks, the flag can be cleared allowing data to be written
to that monitor block. Upon seeing the 0 flag, the Agilent N2216A will write data to
that block and then set the flag indicating that a block of data is available. This
scheme will allow you to change which local bus blocks are being monitored during
the throughput.

177

Sequence Operations Reference
Agilent N2216A Sequence Operations

Wait Bit Set A16 -

Wait Bit Clear Shared RAM 6000-6007

Synchronization operations that can be used to wait for data to be available from a device
that generates data slower than the Agilent N2216A can transfer it.

Sequence Syntax: #h6000,<Count>,<Address>,<Misc>

through

#h6007,<Count>,<Address>,<Misc>

<Count> ::= 0:#b1111111111111111

A16 <Address> ::= 0:#hFFFF

A24 <Address> ::= 0:#hFFFFFF

A32 <Address> ::= 0:#hFFFFFFFF

Shared RAM <Address> ::= 0:262144

<Misc> ::= 0:#hFFFFFFFF

SCPI example: SEQ:ADD #h6002,0,#h380024,#b1000

Note: See “Sequence Quick Reference” on page 143 for a list of all 8 operations included in this
description.

Description: These operations wait for a single bit or a group of bits to be set or cleared in another
device. This description covers 8 operations for which some essential properties are
indicated in the operation name. Each reference is to a 16-bit value and performs a D16
access to the memory location specified. Both the memory space referenced and whether
to wait for the bit(s) to be set or cleared are indicated in the name of the operation.

<Count> specifies a bit mask that is ANDed with the 16-bit register specified by the
memory offset and memory space. For the Set operations, all bits in the mask must be
set. For the Clear operations, all bits in the mask must be clear. The Agilent N2216A
reads this register and checks the bits until the condition is met. If the condition is never
met the Sequence will not be completed.

<Address> indicates the offset into the memory space indicated in the operation name.

<Misc> represents a user-programmable delay prior to the next VXI access. The number
of loops specified here is performed before another VXI access. This frees the VXI bus to
perform additional activities, rather than having Sequence operations completely
dominate VXI bus usage. Loop time is approximately 3 �s.

178

Sequence Operations Reference
Agilent N2216A Sequence Operations

Wait A16 Count16-

Wait Count Shared RAM 32 6008-600f

Synchronization operations that can be used to wait for data to be available from a device
that generates data slower than the Agilent N2216A can transfer it.

Sequence Syntax: #h6008,<Count>,<Address>,<Misc>

through

#h600f,<Count>,<Address>,<Misc>

16 bit <Count> ::= 1:#hFFFF

32 bit <Count> ::= 1:#hFFFFFFFF

A16 <Address> ::= 0:#hFFFF

A24 <Address> ::= 0:#hFFFFFF

A32 <Address> ::= 0:#hFFFFFFFF

Shared RAM <Address> ::= 0:262144

<Misc> ::= 0:#hFFFFFFFF

SCPI example: SEQ:ADD #h600B,#h4000,128000,0

Note: See “Sequence Quick Reference” on page 143 for a list of all 8 operations included in this
description.

Description: These operations wait for the count register in another device to be greater than the value
specified by <Count>. This description covers 8 operations for which some essential
properties are indicated in the operation name. The memory space referenced is
indicated in the name of the operation (A16, A24 or A32, or Shared RAM). The count
register may be a 16-bit or a 32-bit value as indicated by the name of the operation, but all
accesses are done using D16 (a 32-bit count will be performed by using two 16-bit
accesses).

<Count> specifies the number that must be met or exceeded before proceeding. The
Agilent N2216A reads this register and checks the count until the condition is met. If the
condition is never met, the Sequence will not be completed.

<Address> indicates the offset into the memory space indicated in the operation name.

<Misc> represents a user-programmable delay prior to the next VXI access. The number
of loops specified here is performed before another VXI access. This frees the VXI bus to
perform additional activities, rather than having Sequence operations completely
dominate VXI bus usage. Loop time is approximately 3 �s.

179

Sequence Operations Reference
Agilent N2216A Sequence Operations

Wait FIFO Empty

Wait FIFO Half Empty 6010-6011

The Sequence stops executing until data in the Agilent N2216A FIFO has been depleted.

Sequence Syntax: #h6010,<Count>,<Address>,<Misc>

and

#h6011,<Count>,<Address>,<Misc>

<Count> ::= 0

<Address> ::= 0

<Misc> ::= 0

SCPI example: SEQ:ADD #h6010,0,0,0

Description:0 These operations wait for the Agilent N2216A FIFO (131072 bytes in size) to be either half
or completely empty. These operations may be used to synchronize with a device that
does not have a FIFO but is able to burst large amounts of data very quickly. In this case,
it is necessary to wait for the Agilent N2216A FIFO to be (half) empty before reading data
from the device.

As an example, these operations may be necessary to synchronize with the HP/Agilent
E1485C in conjunction with a Control Register operation.

180

Sequence Operations Reference
Agilent N2216A Sequence Operations

Control A16 Reg 16-

Control Reg Shared RAM 32 6018-601f

Synchronization operations that allow the Agilent N2216A to write directly to a memory
location.

Sequence Syntax: #h6018,<Count>,<Address>,<Misc>

through

#h601F,<Count>,<Address>,<Misc>

<Count> ::= 0

A16 <Address> ::= 0:#hFFFF

A24 <Address> ::= 0:#hFFFFFF

A32 <Address> ::= 0:#hFFFFFFFF

Shared RAM <Address> ::= 0:262144

<Misc> ::= #h0:FFFFFFFF

SCPI example: SEQ:ADD #h601A,0,#h2D860860,#hF020

Note: See “Sequence Quick Reference” on page 143 for a list of all 8 operations included in this
description.

Description: These operations allow the Agilent N2216A to write to a memory location, usually for the
purpose of controlling another device on the bus. The register can be either 16-bits wide
or 32-bits wide (a 32-bit register is written as two D16-bit writes). The memory space and
register width are indicated in the Sequence name.

<Count> is not used.

<Address> indicates the offset into the memory space indicated in the operation name.

<Misc> contains the value that is to be written to the memory location specified by the
memory space and the memory offset in the <Address> field.

181

Sequence Operations Reference
Agilent N2216A Sequence Operations

Dump A24 Seq Bytes-

Dump Shared RAM Seq Bytes 6020-6022

Writes to a memory space the number of bytes that have been transferred.

Sequence Syntax: #h6020,<Count>,<Address>,<Misc>

through

#h6022,<Count>,<Address>,<Misc>

<Count> ::= 0

A24 <Address> ::= 0:#hFFFFFF

A32 <Address> ::= 0:#hFFFFFFFF

Shared RAM <Address> ::= 0:262144

<Misc> ::= 0

SCPI example: SEQ:ADD #h6022,0,#h100,0

Note: See “Sequence Quick Reference” on page 143 for a list of all 3 operations included in this
description.

Description: During both throughput and playback Sequences an internal counter keeps a count of
how many bytes have been transferred. The contents of this counter may be written to a
memory space in order to monitor progress of a Sequence.

<Address> indicates the offset into the memory space indicated in the operation name.

<Count> and <Misc> are not used.

182

Sequence Operations Reference
Agilent N2216A Sequence Operations

Programming using SCPI

184

Programming using SCPI

Getting Started

SCPI (Standard Commands for Programmable Instruments) is an industry-standard
instrument control language. SCPI builds on the IEEE 488.1 and 488.2 standards.

Message-based VXI devices

SCPI Command Structure and Format

SCPI organizes related functions by grouping them together on a common branch of a
command tree. Each branch is assigned a keyword to indicate the nature of the related
functions. For example, the functions that control and monitor the status registers are
grouped under the STATUS branch of the command tree. The STATUS branch is only one
of the major SCPI branches that are called subsystems.

Colons indicate branching points on the command tree. A parameter is separated from
the rest of the command by a space.

You can send multiple commands within a single message by separating commands with
semicolons. One of the main functions of the command parser is to keep track of a
program message’s position in the command tree. If a program message contains two
commands separated by a semicolon, the command parser assumes that the keywords of
the second command come from the same branch of the tree as the final keyword of the
preceding command. This allows you to simplify multiple command program messages.

Another way to simplify program messages is to delete implied mnemonics. You can omit
some keywords from the command without changing the effect of the command. Implied
mnemonics are identified by brackets [] in SCPI syntax diagrams.

The illustration below describes the basic syntax of SCPI commands.

For additional information about SCPI command structure and format, see the Beginner’s

Guide to SCPI, available through your local Agilent Technologies Sales Office.

185

Programming using SCPI

Parameter Settings

As the illustration shows, there must be a <WSP>, whitespace or <space>, between the
last command keyword and the first parameter in a command. This is one of the few
places in SCPI where <space> is required. If you send more than one parameter with a
single command, you must separate adjacent parameters using a comma.

Each parameter format has one or more corresponding response-data formats. For
example, a setting that you program using a numeric parameter would return either
floating point or integer response data when queried. Whether floating point or integer
response data is returned, depends on the particular VXI module you are using. However,
response data is clearly defined for the module and query. The next chapter, “SCPI
Command Reference” specifies the data format for individual commands.

For additional information about SCPI data formats, see the Beginner’s Guide to SCPI,
available through your local Agilent Technologies Sales Office.

186

Programming using SCPI
Using the Status Registers

Using the Status Registers

The Agilent N2216A’s status registers contain information about various module
conditions. The following sections describe the registers and tells you how to use them in
your programs.

The General Status Register Model

The general status register model, shown below, is the building block of the Agilent
N2216A’s status system. Most register sets in the module include all of the registers
shown in the general model, although commands are not always available for reading or
writing a particular register. The model consists of a condition register, two transition
registers, an event register, and an enable register.

The flow within a status group starts at the condition register and ends at the register
summary bit. (See the illustration below.) You control the flow by altering bits in the
enable and transition registers.

The Operation Status and Questionable Status groups are 16 bits wide, while the Status
Byte and Standard Event groups are 8 bits wide. In the 16-bit groups, the most significant
bit (bit 15) is not used. Bit 15 is always set to 0.

187

Programming using SCPI
Using the Status Registers

Condition Register

The condition register continuously monitors hardware and firmware status. It
represents the current state of the module. It is updated in real time. When the condition
monitored by a particular bit becomes true, the bit is set to 1. When the condition
becomes false, the bit is reset to 0. Condition registers are read-only.

If there is no command to read a particular condition register, it is simply invisible to you.

The Transition Registers

The positive and negative transition registers specify which type of bit transition in the
Condition register will set corresponding bits in the Event register. Transition register
bits may be set for positive transitions (0 to 1), or negative transitions (1 to 0).

Each bit set in the negative transition register indicates that a 1 to 0 transition of that bit
in the Condition register sets the associated bit in the Event register. Each bit set in the
positive transition register indicates that a 0 to 1 transition of that bit in the Condition
register sets the associated bit in the Event register. Setting the same bits in both the
positive and negative transition registers indicates that any transition of those bits in the
Condition register sets corresponding bits in the Event register.

Event Register

The event register records condition changes. When a change occurs in the condition
register, the corresponding event bit is set to 1 in accordance with the transition register
settings. Once set, an event bit is no longer affected by condition changes and subsequent
events corresponding to that bit are ignored. The event bit remains set until the event
register is cleared— either when the register is read or when the *CLS (clear status)
command is sent. Event registers are read-only.

Note Reading the Event Register, clears the Event Register.

Enable Register

The enable register specifies which bits in the event register set a summary bit to 1. The
module logically ANDs corresponding bits in the event and enable registers, and ORs all
the resulting bits to determine the state of a summary bit. Summary bits are in turn
recorded in the Status Byte. (The summary bit is only set to 1 if one or more enabled
event bits are set to 1.) Enable registers are read-write.

Enable registers are cleared by *CLS (clear status). Querying enable registers does not
affect them. There is always a command to read and write to the enable register of a
particular register set.

How to Use Registers

There are two methods you can use to access the information in register sets:

• The polling method

• The service request (SRQ) method

Use the polling method when:

• Your language/development environment does not support SRQ interrupts.

188

Programming using SCPI
Using the Status Registers

• You want to write a simple, single-purpose program and do not want to add the
complexity of setting up an SRQ handler.

Use the SRQ method when:

• You need time-critical notification of changes.

• You are monitoring more than one device that supports SRQ.

• You need to have the controller do something else while it is waiting.

• You cannot afford the performance penalty inherent to polling.

The Polling Method

In the polling method, the module has a passive role. It only tells the controller that
conditions have changed when the controller asks the right question. In the SRQ method,
the module notifies the controller of a condition change without the controller asking.
Either method allows you to monitor one or more conditions.

When you monitor a condition with the polling method, you must

1. Determine which register contains the bit that monitors the condition.

2. Send the unique SCPI query that reads that register.

3. Examine the bit to see if the condition has changed.

The polling method works well if you do not need to know about changes the moment
they occur. The SRQ method is more effective if you must know immediately when a
condition changes. To detect a change in a condition using the polling method, your
program would need to continuously read the registers at very short intervals. This
makes the program less efficient. In this case, it is better to use the SRQ method.

The SRQ Method

When you monitor a condition with the SRQ method, you must

1. Determine which bit monitors the condition.

2. Determine how that bit reports to the request service (RQS) bit of the Status Byte.

3. Send SCPI commands to enable the bit that monitors the condition and to enable the
summary bits that report the condition to the RQS bit.

4. Enable the controller to respond to service requests.

When the condition changes, the module sets its RQS bit and generates an SRQ. The
controller is informed of the change as soon as it occurs. The time the controller would
otherwise have used to monitor the condition can now be used to perform other tasks.
Your program determines how the controller responds to the SRQ.

Generating a Service Request

To use the SRQ method, you must understand how service requests are generated. As
shown below, other register sets in the module report to the Status Byte. Many of them
report directly, but some may report indirectly.

189

Programming using SCPI
Using the Status Registers

Bit 6 of the Status Byte serves two functions; the request service function (RQS) and the
master summary status function (MSS). The RQS bit changes whenever something
changes that it is configured to report. The RQS bit is cleared when it is read with a serial
poll. The MSS bit is set in the same way as the RQS bit. However, the MSS bit is cleared
only when the condition that set it is cleared. The MSS bit is read with *STB?.

When a register set causes its summary bit in the Status Byte to change from 0 to 1, the
module can initiate the service request (SRQ) process. However, the process is only
initiated if both of the following conditions are true:

• The corresponding bit of the Service Request enable register is also set to 1.

• The module does not have a service request pending.

• (A service request is considered to be pending between the time the module’s SRQ
process is initiated and the time the controller reads the Status Byte register with a
serial poll.)

The SRQ process generates an SRQ. It also sets the Status Byte’s request service (RQS)
bit to 1. Both actions are necessary to inform the controller that the module requires
service. Generating an SRQ only informs the controller that some device on the bus
requires service. Setting the RQS bit allows the controller to determine which device
requires service. That is, it tells the controller that this particular device requires service.

If your program enables the controller to detect and respond to service requests, it should
instruct the controller to perform a serial poll of all modules when an SRQ is generated.
Each device on the bus returns the contents of its Status Byte register in response to this
poll. The device whose RQS bit is set to 1 is the device that requested service.

Note When you read the module’s Status Byte with a serial poll, the RQS bit is reset to 0. Other
bits in the register are not affected.

190

Programming using SCPI
The Agilent N2216A Registers Sets

The Agilent N2216A Registers Sets

The Agilent N2216A uses four register sets to keep track of the module’s status:

• Status Byte

• Questionable Status

• Standard Event

• Operational Status

Their reporting structure is summarized in the illustration below. They are described in
greater detail in the following sections.

Register bits not explicitly presented in the following sections are not used in the Agilent
N2216A. A query to one of these bits returns a value of 0.

Figure 29 Agilent N2216A Register Sets

191

Programming using SCPI
The Agilent N2216A Registers Sets

Status Byte

The Status Byte summarizes the states of the other register sets and monitors the Agilent
N2216A’s output queue. It is also responsible for generating service requests (see
Generating a Service Request on page 188).

The Status Byte is unique because it does not exactly conform to the general status model
presented earlier. It contains only two registers: the Status Byte register and the Service
Request enable register. The Status Byte registers behaves like a condition register for all
bits except bit 6. The Service Request enable behaves like a standard enable register
except that bit 6 is always set to 0.

Bits in the Status Byte register are set to 1 under the following conditions:

• Questionable Status Summary (bit 3) is set to 1 when one or more enabled bits in the
Questionable Status event register are set to 1.

• Message Available (bit 4) is set to 1 when the output queue contains a response
message.

• Standard Event Summary (bit 5) is set to 1 when one or more enabled bits in the
Standard Event event register are set to 1.

• Master Summary Status (bit 6, when read by *STB?) is set to 1 when one or more
enabled bits in the Status Byte register are set to 1.

• Request Service (bit 6, when read by serial poll) is set to 1 by the service request
process (see Generating a Service Request on page 188).

• Operation Status Summary (bit 7) is set to 1 when one or more enabled bits in the
Operation Status event register are set to 1.

The illustration also shows the commands you use to read and write the Status Byte
registers. The following statements are example commands using the Status Byte and
Status Byte enable register.

*SRE 16 Generate an SRQ interrupt when messages are available in the
output queue.

*SRE? Find out what events are enabled to generated SRQ interrupts.

*STB? Read the Status Byte event register.

See Setting and Querying Registers on page 194for more information about these
commands.

192

Programming using SCPI
The Agilent N2216A Registers Sets

Questionable Status Register Set

The Questionable Status register monitors conditions that affect the quality of the data
transfer.

This register set includes a condition register, two transition registers, an event register,
and an enable register. It is accessed through the STATUS subsystem. See Setting and
Querying Registers on page 194 for more information about using these commands.

The Condition Register

Bits in the Questionable Status condition register are set to 1 under the following
conditions:

• Sequence Error (bit 8) is set to 1 when an error is detected during Sequence execution

• Session I/O Error (bit 9) is set to 1 when an error is detected during Session I/O
operation

The illustration shows the commands you use to read and write the Questionable Status
registers.

193

Programming using SCPI
The Agilent N2216A Registers Sets

Standard Event Status Register Set

The Standard Event Status register set monitors module errors as shown below. It is one
of the simplest and most frequently used. The unique aspect of this group is that you
program it using common commands, while you program other register sets through the
STATUS subsystem.

The Standard Event Status Register set does not conform to the general status register
model described at the beginning of this chapter. It contains only two registers: the
Standard Event Status event register and the Standard Event Status enable register.

Bits in the Standard Event Status event register are set to 1 under the following
conditions:

• Operation Complete (bit 0) is set to one when the following two events occur (in the
order listed):

• You send the *OPC command to the module.

• The module completes all pending overlapped commands.

• Query Error (bit 2) is set to 1 when the module detects a query error.

• Device Dependent Error (bit 3) is set to 1 when the command parser or execution
routines detect a device-dependent error.

• Execution Error (bit 4) is set to 1 when the command parser or execution routines
detect an execution error.

• Command Error (bit 5) is set to 1 when the command parser detects a command or
syntax error.

• Power On (bit 7) is set to 1 when you turn on the module.

The illustration also shows the commands you use to read and write the Standard Event
Status register sets. Example commands using Standard Event Status registers:

*ESE 48 Generate a summary bit whenever there is an execution or
command error

*ESE? Query the state of the Standard Event Status enable register?

*ESR? Query the state of the Standard Event Status event register.

See Setting and Querying Registers on page 194 for more information about using these
commands.

194

Programming using SCPI
The Agilent N2216A Registers Sets

Operation Status Register Set

The Operation Status register set monitors conditions in the module’s data transfer
process.

This register set includes a condition register, two transition registers, an event register,
and an enable register. It is accessed through the STATUS subsystem. See Setting and
Querying Registers on page 194 for more information about using these commands.

Bits in the Operation Status condition register are set to 1 under the following conditions:

• Sequence in Progress (bit 4) is set to 1 while a Sequence is in progress and to 0 when
the Sequence has finished.

• Waiting for TRIG (bit 5) is set to 1 when the module is ready to accept a trigger signal
from one of the trigger sources. (If a trigger signal is sent before this bit is set, the
signal is ignored.)

• Session in Progress (bit 8) is set to 1 while a Session is in progress and to 0 when a
Session is has finished.

The illustration shows the commands you use to read and write the Operation Status
registers.

Setting and Querying Registers

The previous register set illustrations include the commands you use to read from and to
write to the registers. Most commands have a set form and a query form.

Use the set form of the command to write to a register. The set form is shown in the
illustrations. The set form of a command takes an extended numeric parameter.

Use the query form of the command to read a register. Add a “?” to the set form to create
the query form of the command. Commands ending with a “?” in the illustrations are
query-only commands. These commands cannot set the bits in the register, they can only
query or read the register.

195

Programming using SCPI
The Agilent N2216A Registers Sets

The register set illustrations also include the bit weights you use to specify each bit in the
register. For example, to get the Waiting for Trigger condition register (bit 5 in Operation
Status register set) to generate a service request, send the following commands:

STATUS:PRESET Sets the Enable register bits in the Operational Status and the
Questionable Status register sets to 0.

STATUS:OPERATION:ENABLE 32 Sets the Waiting for Trigger Enable register (bit 5)
to 1.

*SRE 128 Sets bit 7 of the Service Request Enable register to 1.

See the next chapter for more information about these commands.

Agilent N2216A Register Set Summary

196

Programming using SCPI
Addressing the Agilent N2216A

Addressing the Agilent N2216A

The Agilent N2216A address in a SCPI environment consist of 3 parts; an interface select
code, the primary address and the secondary address.

The interface select code specifies the interface. Seven (7) is a typical number for the
GPIB interface.

The primary address, typically 09, indicates which GPIB port in the system controller is
used to communicate with the Slot 0 Control Module, for example the HP/Agilent E1406A.

The secondary address indicates the device-specific address. In this case, it represents
the VXI logical address.

The VXI logical address ranges in value from 1 to 255. For use with a command module,
the logical address to the GPIB cannot be used directly, but must be encoded into the
GPIB secondary address. In addition, the logical address of the Agilent N2216A must be a
multiple of 8, not including 0.

If the logical address is 8, the GPIB secondary address is encoded to 1. If the logical
address is 40, the secondary address is encoded to 5. In these examples, the GPIB
address is 70901 and 70905.

Software running in a computer writing to a Slot 0 Control Module needs to use all three
addresses: the select code, the primary GPIB address, and the secondary address.

If a command module is not used, but rather another type of controller such as MXI, V382,
or V743, the divide by 8 restriction for the VXI logical address does not apply and any
logical address from 1 to 255 may be used.

SCPI Command Reference

198

SCPI Command Reference

Message-based VXI devices

The Command Reference chapter describes all of the Agilent N2216A’s SCPI commands.
Each command has the following:

1. The heading. This includes two fields. The field to the left shows the command name.
The field to the right indicates whether the command has a command form, a query
form, or both.

2. A brief description of the command. This one- or two-line description appears just
below the heading.

3. A syntax description. This may consist of one or two parts: only a command syntax,
only a query syntax, or both. The syntax description shows you the syntax expected
by the command parser. A detailed description for the elements appearing in the
syntax description follows. For additional information about message syntax see the
Beginner’s Guide to SCPI, available through your local Agilent Technologies Sales
Office.

4. Example statements. This field appears at the end of the syntax description. It
contains two examples of BASIC output statements that use the command.

5. A return format description. This field is only used if the command has a query form.
It tells you how data is returned in response to the query.

6. An attribute summary. This field defines the command’s preset state, identifies
overlapped commands requiring synchronization, and specifies compliance with
SCPI. A “confirmed” command complies with SCPI 1994.

7. A detailed description. This field contains additional information about the command.

199

SCPI Command Reference

Finding the Right Command

• If you do not find a command where you expect it, try scanning the Agilent N2216A
SCPI Quick Reference tables that begin on page 202 for the equivalent command that
contains the implied mnemonic.

Each command has a brief description. After you locate the equivalent command, you
can find a more detailed description in the command reference.

• If you are looking for a command that accesses a particular function, use the index.

For example, if you want to find the commands that open or close a Transfer Unit,
look for “transfer unit” in the index. It sends you to the pages that describe the
MMEMory:TUNit[1|2|...|15]:OPEN and MMEMory:TUNit[1|2|...|15]:CLOSe commands.

200

SCPI Command Reference

Command Syntax

This section describes the syntax elements used in the SCPI command reference. It also
describes the general syntax rules for both kinds of command and query messages.

Note For a more detailed discussion of message syntax, including example program listings,
see the Beginner’s Guide to SCPI available through your local Agilent Technologies Sales
Office.

Special Syntactic Elements

Several syntactic elements have special meanings:

• colon (:) — When a command or query contains a series of keywords, the keywords
are separated by colons. A colon immediately following a keyword tells the command
parser that the program message is proceeding to the next level of the command tree.
A colon immediately following a semicolon tells the command parser that the program
message is returning to the base of the command tree.

• semicolon (;) — When a program message contains more than one command or query,
a semicolon is used to separate them from each other. For example, if you want to set
up Session devices to begin at a specified block number and then start a measurement
using one program message, the message would be:

MMEMory:SESSion2:SEEK 8191;:SEQuence:BEGin VPL,262144,1

• comma (,) — A comma separates the data sent with a command or returned with a
response. For example, the SEQuence:BEGin command requires three values to
determine the destination, size, and data source of a Sequence that is to be executed.
For example, a message to begin a playback to the local bus of 8388608 bytes from
Session 3 would be:

SEQuence:BEGin LPL,8388608,3

• <WSP> — One white space is required to separate a program message (the command
or query) from its parameters. For example, the command “SEQuence:BEGin
VPL,262144,1” contains a space between the program header (SEQuence:BEGin) and
its program data (VPL,262144,1). White space characters are not allowed within a
program header.

For more information, see the Beginner’s Guide to SCPI available through your local
Agilent Technologies Sales Office.

201

SCPI Command Reference

Conventions

Syntax and return format descriptions use the following conventions:

• < > Angle brackets enclose the names of items that need further definition. The
definition will be included in accompanying text. In addition, detailed descriptions of
these elements appear at the end of this section.

• ::= “is defined as” When two items are separated by this symbol, the second item
replaces the first in any statement that contains the first item. For example, A::=B
indicates that B replaces A in any statement that contains A.

• | “or” When items in a list are separated by this symbol, one and only one of the items
can be chosen from the list. For example, A|B indicates that A or B can be chosen, but
not both.

• ... An ellipsis (trailing dots) is used to indicate that the preceding element may be
repeated one or more times.

• [] Square brackets indicate that the enclosed items are optional.

• { } Braces are used to group items into a single syntactic element. They are most often
used to enclose lists and to enclose elements that are followed by an ellipsis.

Although the command interpreter is not case sensitive, the case of letters in the
command keyword is significant in the Command Reference. Keywords that are longer
than four characters can have a short form or a long form. SCPI accepts either form.
Upper-case letters show the short form of a command keyword. For more information,
see the Beginner’s Guide to SCPI.

SCPI is sensitive to white space characters. White space characters are not allowed
within command keywords. They are only allowed when they are used to separate a
command and a parameter.

A message terminator is required at the end of a program message or a response message.
Use <NL>, <^END>, or <NL> <^<END> as the program message terminator. The word
<NL> is an ASCII new line (line feed) character. The word <^END> means that End or
Identify (EOI) is asserted on the GPIB interface at the same time the preceding data byte
is sent. Most programming languages send these terminators automatically. For
example, if you use the BASIC OUTPUT statement, <NL> is automatically sent after your
last data byte. If you are using a PC, you can usually configure your system to send
whatever terminator you specify.

For more information about terminating messages, see the Beginner’s Guide to SCPI.

Syntax Descriptions

Syntax descriptions in the SCPI command reference chapter use the following elements:

<CHAR> This item designates a string of ASCII characters. There are no delimiters.
Usually, the string is from an explicit set of responses. Maximum length is 12 characters.

<STRING> This item specifies any 8-bit characters delimited by single quotes or double
quotes. The beginning and ending delimiter must be the same. If the delimiter character
is within the string, it must be entered twice. (For example, to get “EXAMPLE”, enter
""EXAMPLE"").

202

SCPI Command Reference
Agilent N2216A SCPI Quick Reference

Agilent N2216A SCPI Quick Reference

Command Description Page

Common Commands

*CLS Clears the Status Byte 205

*ESE Sets or queries bits in the Standard Event Status enable
register

206

*ESR? Reads and clears the Standard Event Status event register 207

*IDN? Returns module’s identification string 208

*OPC Enables status bit or query completion of all pending
overlapped commands

209

*RST Executes a device reset 210

*SRE Sets or queries bits in the Service Request enable register 211

*STB? Reads the Status Byte register 212

*TST? Performs selftest 213

*WAI Wait-to-continue command 214

Local Bus Configuration

LBUS:READ:BUFFer Transfers data from the module to the left of the Agilent
N2216A to a memory buffer

222

LBUS:WRITe:BUFFer Transfers data from a memory buffer to the module to the
right of the Agilent N2216A

223

VINStrument[:CONFigure]:LBUS [:MODE]
RESet|NORMal|PIPE

Configures the local bus 267

VINStrument:LBUS:RESet Resets the Agilent N2216A local bus 268

Mass Memory Control

MMEMory:SCSI[1|2|...|30]:BSIZe? Returns the number of bytes in a logical block of an open
SCSI device

224

MMEMory:SCSI[1|2|...|30]:CAPacity? Returns the number of logical blocks on an open SCSI
device

229

MMEMory:SCSI[1|2|...|30]:CLOSe Closes a SCSI device 230

MMEMory:SCSI[1|2|...|30]:EBYPass [:STATe] Sets or queries erase bypass mode of certain magneto-
optical disks

231

MMEMory:SCSI[1|2|...|30]:ERASe Erases blocks on certain magneto-optical disks 232

203

SCPI Command Reference
Agilent N2216A SCPI Quick Reference

MMEMory:SCSI[1|2|...|30]:OPEN Opens a SCSI device 233

MMEMory:SESSion[1|2|...|12]:ADD Adds a Transfer Unit to a SCSI Session 236

MMEMory:SESSion[1|2|...|12]:COPY Copies data from one SCSI Session to another 237

MMEMory:SESSion[1|2|...|12]:DELete:ALL Deletes all Transfer Units from the specified SCSI Session 238

MMEMory:SESSion[1|2|...|12]:READ:BUFFer Reads data from a Session into a memory buffer 239

MMEMory:SESSion[1|2|...|12]:READ:FIFO Reads data from a SCSI Session into a FIFO 240

MMEMory:SESSion[1|2|...|12]:SEEK Locates a specific logical block in a Session 241

MMEMory:SESSion[1|2|...|12]:SIZE? Returns the number of Transfer Units in the Session 242

MMEMory:SESSion[1|2|...|12]:WRITe:BUFFer Writes data to a SCSI Session from a memory buffer 243

MMEMory:SESSion[1|2|...|12]:WRITe:FIFO Writes data to a SCSI Session from a FIFO 244

MMEMory:TUNit[1|2|...|15]:CLOSe Closes an open Transfer Unit 245

MMEMory:TUNit[1|2|...|15]:OPEN Opens a Transfer Unit 246

Sequence Operations

SEQuence[1|2|3|4]:ADD Appends an operation to the specified Sequence 247

SEQuence[1|2|3|4]:BEGin Begins a Sequence for data transfer 248

SEQuence[1|2|3|4]:DELete:ALL Removes all operations from the specified Sequence list 249

SEQuence[1|2|3|4]:SIZE? Returns the number of elements in the Sequence 250

SEQuence[1|2|3|4]:TRANsferred? Returns the number of bytes transferred in the Sequence 251

Status Reporting

STATus:OPERation:CONDition? Reads the Operation Status condition register 252

STATus:OPERation:ENABle Sets and queries bits in the Operation Status enable register 253

STATus:OPERation[:EVENt]? Reads and clears the Operation Status event register 254

STATus:OPERation:NTRansition Sets and queries bits in the Operation Status negative
transition register

255

STATus:OPERation:PTRansition Sets and queries bits in the Operation Status positive
transition register

256

STATus:PRESet Sets bits in most enable and transition registers to the
default state

257

STATus:QUEStionable:CONDition? Reads the Questionable Status condition register 258

STATus:QUEStionable:ENABle Sets and queries bits in the Questionable Status enable
register

259

STATus:QUEStionable[:EVENt]? Reads and clears the Questionable Status event register 260

STATus:QUEStionable:NTRansition Sets and queries bits in the Questionable Status negative
transition register

261

STATus:QUEStionable:PTRansition Sets and queries bits in the Questionable Status positive
transition register

262

Command Description Page

204

SCPI Command Reference
Agilent N2216A SCPI Quick Reference

System Control

SYSTem:ABORt Aborts a data transfer Session and/or Sequence 263

SYSTem:COMMunicate:SCSI[:SELF]:ADDRess Changes the module’s SCSI bus controller address 264

SYSTem:ERRor? Returns one error message from the module’s queue 265

SYSTem:VERSion? Returns the SCPI version to which the module complies 266

Diagnostics

DIAGnostic:BOARd:MAIN? Tests the Main PC board 215

DIAGnostic:BOARd:SCSI? Tests the SCSI PC board 216

DIAGnostic:LBUS:CONSume? Tests the local bus data transfer to module 217

DIAGnostic:LBUS:GENerate? Tests the local bus data transfer from module 218

DIAGnostic:SCSI:DAT? Tests DAT at specific SCSI bus/address 219

DIAGnostic:SCSI:DEVices? Tests the interface for a specific SCSI controller 220

DIAGnostic:SCSI:DISK? Tests disk at specific SCSI bus/address 221

The following commands are provided for backward compatibility with models HP E1562A/B/C (which use HP-
manufactured disk drives) and application software designed to support them. Their behavior for the non-HP-
manufactured disk drives used in the Agilent N2216A or for non-HP- manufactured disk drives supplied by the
customer are described in the command descriptions on the following pages.

MMEMory:SCSI[1|2|...|30]:CALibrate:AUTO Sets or queries the Auto Head Calibration Mode of an open
SCSI device

225

MMEMory:SCSI[1|2|...|30]:CALibrate[:IMMe
diate]

Performs head calibration on an open SCSI device 227

MMEMory:SCSI[1|2|...|30]:CALibrate:TIME? Returns the time until the next head calibration 228

MMEMory:SCSI[1|2|...|30]:TEMPerature? Returns drive temperature 235

Command Description Page

205

SCPI Command Reference
Agilent N2216A SCPI Commands

Agilent N2216A SCPI Commands

*CLS command

Clears the Status Byte by emptying the error queue and clearing all event registers.

Command Syntax: *CLS

Example

Statements:

OUTPUT 70918;":*CLS"
OUTPUT 70918;"*cls"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: confirmed

Description: This command clears the Status Byte register. It does so by emptying the error queue and
clearing (setting to 0) all bits in the event registers of the following register sets:

• Questionable Status

• Standard Event

• Operation Status

In addition, *CLS cancels any preceding *OPC command or query. This ensures that bit 0
of the Standard Event register will not be set to 1 and that a response will not be placed in
the instrument’s output queue when pending overlapped commands are completed.

*CLS does not change the current state of enable registers or transition filters.

Note To guarantee that the Status Byte’s Message Available and Master Summary Status bits
are cleared, send *CLS immediately following a Program Message Terminator.

 For more information on the Status Byte register, see “The Agilent N2216A Registers
Sets” on page 190.

206

SCPI Command Reference
Agilent N2216A SCPI Commands

*ESE command/query

Sets or queries bits in the Standard Event Status enable register.

Command Syntax: *ESE <Mask>

<Mask>::=number
limits: 0:255

Example

Statements:

OUTPUT 70918;"*ese 1"
OUTPUT 70918;"*ESE 60"

Query Syntax: *ESE?

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: confirmed

Description: This command allows you to set bits in the Standard Event Status enable register. Assign
a decimal weight to each bit you want set (to 1) according to the following formula:

2(bit_number)

with acceptable values for bit_number being 0 through 7. Add the weights and then send
the sum with this command.

When an enable register bit is set to 1, the corresponding bit of the Standard Event Status
event register is enabled. All enabled bits are logically ORed to create the Standard Event
Status summary, which reports to bit 5 of the Status Byte. Bit 5 is only set to 1 if both of
the following are true:

• One or more bits in the Standard Event Status event register are set to 1.

• At least one set bit is enabled by a corresponding bit in the Standard Event Status
enable register.

The query returns the current state of the Standard Event Status enable register. The
state is returned as a sum of the decimal weights of all set bits.

For more information on the Standard Event Status register set, see the “Agilent N2216A
Register Set Summary” on page 195.

207

SCPI Command Reference
Agilent N2216A SCPI Commands

*ESR? query

Reads and clears the Standard Event Status event register.

Query Syntax: *ESR?

Example

Statements:

OUTPUT 70918;":*ESR?"
OUTPUT 70918;"*esr?"

Return Format: Integer

Attribute Summary: Preset State: +0
Synchronization Required: no
SCPI Compliance: confirmed

Description: This query returns the current state of the Standard Event Status event register. The state
is returned as a sum of the decimal weights of all set bits. The decimal weight for each bit
is assigned according to the following formula:

2(bit_number)

with acceptable values for bit_number being 0 through 7.

The query clears the register after it reads the register.

A bit in this register is set to 1 when the condition it monitors becomes true. A set bit
remains set, regardless of further changes in the condition it monitors, until one of the
following occurs:

• You read the register with this query.

• You clear all event registers with the *CLS command.

For more information on the Standard Event Status enable register set, see the “Agilent
N2216A Register Set Summary” on page 195.

208

SCPI Command Reference
Agilent N2216A SCPI Commands

*IDN? query

Returns a string that uniquely identifies the module.

Query Syntax: *IDN?

Example

Statements:

OUTPUT 70918;":*IDN?"
OUTPUT 70918;"*idn?"

Return Format: Hewlett-Packard,N2216A (E1562E),<serial_number><software_revision>

Attribute Summary: Preset State: instrument dependent
Synchronization Required: no
SCPI Compliance: confirmed

Description: This query returns:

• The name of the manufacturer. The manufacturer’s name is stored in ROM. Since the
ROM was not updated during this product’s transition from Hewlett-Packard to
Agilent Technologies, Hewlett-Packard is returned.

• The product number, N2216A (E1562E)

• The serial number

• The version of the software

209

SCPI Command Reference
Agilent N2216A SCPI Commands

*OPC command/query

Enable status bit or query completion of all pending overlapped commands.

Command Syntax: *OPC

Example

Statements:

OUTPUT 70918;":*OPC"
OUTPUT 70918;"*opc"

Query Syntax: *OPC?

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: confirmed

Description: Some commands are processed sequentially. A sequential command holds off the
processing of subsequent commands until it has been completely processed. However,
some commands do not hold off the processing of subsequent commands. These
commands are called overlapped commands. At times, overlapped commands require
synchronization. The Attribute Summary for each command indicates whether it requires
synchronization.

The module uses the No Pending Operation (NPO) flag to keep track of overlapped
commands that are still pending (that is, not completed). The NPO flag is reset to 0 when
an overlapped command is pending. It is set to 1 when no overlapped commands are
pending. You cannot read the NPO flag directly, but you can use *OPC and *OPC? to tell
when the flag is set to 1.

If you use *OPC, bit 0 of the Standard Event Status event register is set to 1 when the NPO
flag is set to 1. This allows the instrument to generate a service request when all pending
overlapped commands are completed (assuming you have enabled bit 0 of the Standard
Event Status register and bit 5 of the Status Byte register).

If you use *OPC?, +1 is placed in the output queue when the NPO flag is set to 1. This
allows you to effectively pause the controller until all pending overlapped commands are
completed. It must wait until the response is placed in the queue before it can continue.

Note The *CLS and *RST commands cancel any preceding *OPC command or query. Pending
overlapped commands are still completed, but you can no longer determine when.

210

SCPI Command Reference
Agilent N2216A SCPI Commands

 *RST command

Executes a device reset.

Command Syntax: *RST

Example

Statements:

OUTPUT 70918;":*RST"
OUTPUT 70918;"*rst"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: confirmed

Description: This command returns the instrument to a reset state. In addition, *RST cancels any
pending *OPC command or query.

The reset state is the same as the preset state. The preset state of each command is listed
in the Attribute Summary.

The following are not affected by this command:

• The error queue

• The state of all enable registers

• The state of all transition registers

211

SCPI Command Reference
Agilent N2216A SCPI Commands

*SRE command/query

Sets or queries bits in the Service Request enable register.

Command Syntax: *SRE <Mask>

<Mask>::=number
limits: 0:255

Example

Statements:

OUTPUT 70918;":*SRE 128"
OUTPUT 70918;"*sre 32"

Query Syntax: *SRE?

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: confirmed

Description: This command allows you to set bits in the Service Request enable register. Assign a
decimal weight to each bit you want set (to 1) according to the following formula:

2(bit_number)

with acceptable values for bit_number being 0 through 7. Add the weights and then send
the sum with this command.

Note The module ignores the setting you specify for bit 6 of the Service Request enable register.
This is because the corresponding bit of the Status Byte register is always enabled.

 The module requests service from the active controller when one of the following occurs:

• A bit in the Status Byte register changes from 0 to 1 while the corresponding bit of the
Service Request enable register is set to 1.

• A bit in the Service Request enable register changes from 0 to 1 while the
corresponding bit of the Status Byte register is set to 1.

The query returns the current state of the Service Request enable register. The state is
returned as a sum of the decimal weights of all set bits.

212

SCPI Command Reference
Agilent N2216A SCPI Commands

*STB? query

Reads the Status Byte register.

Query Syntax: *STB?

Example

Statements:

OUTPUT 70918;":*STB?"
OUTPUT 70918;"*stb?"

Return Format: Integer

Attribute Summary: Preset State: variable
Synchronization Required: no
SCPI Compliance: confirmed

Description: This command allows you to set bits in the Status Byte register. The state is returned as a
sum of the decimal weights of all set bits. The decimal weight for each bit is assigned
according to the following formula:

2(bit_number)

with acceptable values for bit_number being 0 through 7.

The register is not cleared by this query. To clear the Status Byte register, you must send
the *CLS command.

For more information on the Status Byte register, see the “Agilent N2216A Register Set
Summary” on page 195.

213

SCPI Command Reference
Agilent N2216A SCPI Commands

*TST? query

Performs a selftest on the instrument hardware and returns the results.

Query Syntax: *TST?

Example

Statements:

OUTPUT 70918;":*TST?"
OUTPUT 70918;"*tst?"

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: confirmed

Description: This command performs tests on both the internal main board and the internal SCSI
board by sending the commands DIAGnostic:BOARd:MAIN? and
DIAGnostic:BOARd:SCSI?

The following errors indicate that DIAG:BOAR:MAIN failed:

1: diagErr_versionOrSwitch
2: diagErr_fitsReset
3: diagErr_lbusStatic
4: diagErr_fitsStatic
5: diagErr_vxiStatic
6: diagErr_sharedRam
7: diagErr_fifo
8: diagErr_sramMagicRead
9: diagErr_sramMagicWrite
10: diagErr_a24MagicRead
11: diagErr_a24MagicWrite

The following errors indicate that DIAG:BOAR:SCSI failed:

12: diagErr_staticScsi
13: diagErr_inScsi
14: diagErr_outScsi

See the DIAGnostic commands for additional diagnostic tests.

214

SCPI Command Reference
Agilent N2216A SCPI Commands

*WAI command

Holds off processing of subsequent commands until all preceding commands have been
processed.

Command Syntax: *WAI

Example

Statements:

OUTPUT 70918;":*WAI"
OUTPUT 70918;"*wai"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: confirmed

Description: Use *WAI to hold off the processing of subsequent commands until all pending
overlapped commands have been completed.

Some commands are processed sequentially by the instrument. A sequential command
holds off the processing of any subsequent commands until it has been completely
processed. However, some commands do not hold off the processing of subsequent
commands; they are referred to as overlapped commands. *WAI ensures that overlapped
commands are completely processed before subsequent commands (those sent after
*WAI) are processed.

215

SCPI Command Reference
Agilent N2216A SCPI Commands

DIAGnostic:BOARd:MAIN? query

Tests the Main internal PC board.

Query Syntax: DIAGnostic:BOARd:MAIN?

Example

Statements:

OUTPUT 70918;":DIAGNOSTIC:BOARD:MAIN?"
OUTPUT 70918;"diag:boar:main?"

Return Format: String

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: Failures return a string describing the error.

See “Troubleshooting the Agilent N2216A” starting on page 27 for usage information.

216

SCPI Command Reference
Agilent N2216A SCPI Commands

DIAGnostic:BOARd:SCSI? query

Tests the internal SCSI PC board.

Query Syntax: DIAGnostic:BOARd:SCSI?

Example

Statements:

OUTPUT 70918;":DIAGNOSTIC:BOARD:SCSI?"
OUTPUT 70918;"diag:boar:scsi?"

Return Format: String

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: Failures return a string describing the error.

See “Troubleshooting the Agilent N2216A” starting on page 27 for usage information.

217

SCPI Command Reference
Agilent N2216A SCPI Commands

DIAGnostic:LBUS:CONSume? query

Tests the a local bus data transfer to the module.

Query Syntax: DIAGnostic:LBUS:CONSume? <Logical Address>

<Logical Address> ::= number
limits 0-255

Example

Statements:

OUTPUT 70918;":DIAGNOSTICLBUS:CONSUME? 32"
OUTPUT 70918;"diag:lbus:cons? 96"

Return Format: String

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description:. This test requires more than one Agilent N2216A module. This command is sent to the
Agilent N2216A on the right of two adjacent Agilent N2216As and tests the ability to
transfer data from the local bus to the module.

<Logical Address> specifies the VXI logical address of the Agilent N2216A to the left of
this module.

Failures return a string describing the error.

218

SCPI Command Reference
Agilent N2216A SCPI Commands

DIAGnostic:LBUS:GENerate? query

Tests the local bus data transfer from the module.

Query Syntax: DIAGnostic:LBUS:GENerate? <Logical Address>

Example

Statements:

OUTPUT 70918;":DIAGNOSTIC:BUS:GENERATE? 64"
OUTPUT 70918;"diag:bus:gen? 136"

Return Format: String

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: This test requires more than one Agilent N2216A module to perform. This command is
sent to the Agilent N2216A on the left of two adjacent Agilent N2216As and tests the
ability to transfer data from the module to the local bus.

<Logical Address> specifies the VXI logical address of the Agilent N2216A to the left of
this module.

Failures return a string describing the error.

219

SCPI Command Reference
Agilent N2216A SCPI Commands

DIAGnostic:SCSI:DAT? query

Performs tests on a SCSI DAT.

Query Syntax: DIAGnostic:SCSI:DAT? <Controller>,<Bus Address>

<Controller>::=A|B

<Bus Address>::=number
limits: 0:15

Example

Statements:

OUTPUT 70918;":DIAGNOSTIC:SCSI:DAT? A,0"
OUTPUT 70918;"diag:scsi:dat? a,7"

Return Format: String

Attribute Summary: Preset State: not applicable
synchronization Required: no
SCPI Compliance: instrument-specific

Description: Tests the DAT specified at the given SCSI bus address. If the device at this address is not
a DAT an error will be returned.

Note A DAT tape must be inserted in the DAT drive in order to perform this test. All data on the
tape will be destroyed during this test.

Failures return a string describing the error.

220

SCPI Command Reference
Agilent N2216A SCPI Commands

DIAGnostic:SCSI:DEVices? query

Verifies the interface for a specific SCSI controller.

Query Syntax: DIAGnostic:SCSI:DEVices? <Controller>

<Controller>::=A|B

Example

Statements:

OUTPUT 70918;":DIAGNOSTIC:SCSI:DEVICES? A"
OUTPUT 70918;"diag:scsi:dev? b"

Return Format: String

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: This command verifies correct operation of a single SCSI controller chip and also its
interface to external devices. The command must be sent to each controller to verify that
both of the SCSI controller chips are functioning. If the test is successful the command
returns a string which contains the SCSI address, vendor id, product id, and product
revision in a "dd:aaaaa aaaaa-aaaa" format. A null string is returned if the test fails.

Example of the string returned when the SCSI bus contains a Seagate disk at SCSI
address 0:

This command does not verify that the devices connected to the SCSI bus are operating
correctly. The command DIAG:BOARd:SCSI? verifies that the Agilent N2216A side of the
controller chip is functioning correctly. The command DIAG:SCSI:DISK? and
DIAG:SCSI:DAT? verify that individual devices are functioning correctly.

See “Troubleshooting the Agilent N2216A” starting on page 27 for usage information.

../+
,0,�
�+�12.134%56...7

+'+$�, ����

)�� ���$! ��� ����$!

��� ����8�"�����

221

SCPI Command Reference
Agilent N2216A SCPI Commands

DIAGnostic:SCSI:DISK? query

Performs tests on a SCSI disk drive.

Query Syntax: DIAGnostic:SCSI:DISK? <Controller>,<Bus Address>

<Controller>::=A|B

<Bus Address>::=number
limits 0:15

Example

Statements:

OUTPUT 70918;":DIAGNOSTIC:SCSI:DISK? A,12"
OUTPUT 70918;"diag:scsi:disk? b,2"

Return Format: String

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: Tests the disk drive specified at the given SCSI bus address. If the device at this address is
not a disk, an error will be returned.

Failures return a string describing the error.

See “Troubleshooting the Agilent N2216A” starting on page 27 for usage information.

222

SCPI Command Reference
Agilent N2216A SCPI Commands

LBUS:READ:BUFFer command

Reads data from the module to the left of the Agilent N2216A and writes it to a memory
buffer.

Command Syntax: LBUS:READ :BUFFer<Count>, <Blocksize>, <Offset>, <Memory Space>

<Count>::=number
limits: 1:256

<Blocksize>::=number
limits: 16:65536

<Offset>::=number
limits: 0:4294967295

<Memory Space>::=A24|A32|SRAM

Example

Statements:

OUTPUT 70918;":LBUS:READ:BUFFER 16,#H3000D000,A32"
OUTPUT 70918;"lbus:read:buff 64,#h20a080,a24"

Attribute Summary: Preset State: not applicable
Synchronization Required: yes
SCPI Compliance: instrument-specific

Description: This command may be used in conjunction with MMEM:SESS:WRIT:BUFF to transfer
data from the local bus to a session. In most cases you will find it easier and faster to use
Sequence throughput operations.

This command reads data from the module to the left of the Agilent N2216A on local bus
and writes it using D16 to a designated memory location using LBUS CONSUME mode
and 4 bytes per local bus element. You must have previously sent the VINStrument:LBUS
command with the NORMal parameter.

<Count> specifies the number of Lbus blocks to write to the memory buffer from the
local bus.

<Blocksize> specifies the number of bytes per local bus block. A block marker will be
received after this many bytes have been read. The maximum number of local bus blocks
read is 256.

<Offset> indicates where in the designated memory buffer space the data will be written.
The value is an offset from the beginning of the address space. All address spaces start at
offset 0. A24 has an upper limit of 16777215, A32 has an upper limit of 4294967295, SRAM
has an upper limit of 262143. The value of offset must be divisible by 2.

<Memory space> specifies into which memory to write the data blocks. The usable
memory spaces for this command are A24, A32, and SRAM. SRAM indicates the Agilent
N2216A shared RAM.

Note Be sure enough memory space is available for the data to be transferred.

223

SCPI Command Reference
Agilent N2216A SCPI Commands

LBUS:WRITe:BUFFer command

Reads data from a memory buffer and writes it to the module to the right of the Agilent
N2216A.

Command Syntax: LBUS:WRITe:BUFFer <Count>, <Blocksize>, <Offset>, <Memory Space>

<Count>::=number
limits: 1:256

<Blocksize>::=number
limits: 16:65536

<Offset>::=number
limits: 0:4294967295

<Memory Space>::=A24|A32|SRAM

Example

Statements:

OUTPUT 70918;"LBUS:WRITE:BUFFER 128,16,#H20000000,A32"
OUTPUT 70918;"lbus:writ:buff 16,#h10,#h128,sram"

Attribute Summary: Preset State: not applicable
Synchronization Required: yes
SCPI Compliance: instrument-specific

Description: This command may be used in conjunction with MMEM:SESS:READ:BUFF to transfer
data from a session to the local bus. In most cases, you will find it easier and faster to use
Sequence playback operations.

This command uses D16 to read blocks of data from a designated offset in a memory
buffer then writes them to the module to the right of the Agilent N2216A on the local bus
using LBUS GENERATE mode and 4 bytes per local bus element. The VINStrument:LBUS
command must have been previously sent with the NORMal parameter.

<Count> specifies the number of local bus blocks to read from the memory buffer and
copy to the local bus.

<Blocksize> specifies the number of bytes per local bus block. A block marker will be
asserted after this many bytes have been transferred on the local bus. A frame marker
will also be asserted periodically, but there should be no particular meaning associated
with the frame marker. The maximum number of local bus blocks written is 256.

<Offset> indicates from where in the designated memory buffer space the data will be
read. The value is an offset from the beginning of the address space. All address spaces
start at offset 0. A24 has an upper limit of 16777215, A32 has an upper limit of 4294967295,
SRAM has an upper limit of 262143. The value of offset must be divisible by 2.

224

SCPI Command Reference
Agilent N2216A SCPI Commands

MMEMory:SCSI[1|2|...|30]:BSIZe? query

Returns the number of bytes in a logical block for an open SCSI device.

Query Syntax: MMEMory:SCSI[1|2|...|30]:BSIZe?

Example

Statements:

OUTPUT 70918;":MMEMory:SCSI4:BSIZe?"
OUTPUT 70918;"mmemory:scsi23:bsize?"

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: The returned value is the number of bytes in a logical block for any SCSI device that has
been opened by the MMEM:SCSI:OPEN command. An error will be generated if the
device is not currently open. To find the number of logical blocks on a device send
MMEM:SCSI:CAPacity?

Some of the MMEM commands require addresses and counts specified in terms of logical
blocks. The return value of this query specifies the size of a logical block.

225

SCPI Command Reference
Agilent N2216A SCPI Commands

MMEMory:SCSI[1|2|...|30]:CALibrate:AUTO command/query

Note This command is provided for backward compatability with models HP E1562A/B/C
(which use HP-manufactured disk drives) and application software designed to support
them. Using this command with the non-HP-manufactured disk drives (including those in
the Agilent N2216A) results in no action. The query returns the current head calibration
mode, but the number does not mean anything for a non-HP drive.

Sets or queries the Auto Head Calibration Mode of an open HP disk drive.

Command Syntax: MMEMory:SCSI[1|2|...|30]:CALibrate:AUTO <Auto Cal Mode>

<Auto Cal Mode>::=ON|OFF

Example

Statements:

OUTPUT 70918;":MMEM:SCSI14:CAL:AUTO OFF"
OUTPUT 70918;"mmemory:scsi18:calibrate:auto ON"

Query Syntax: MMEMory:SCSI[1|2|...|30]:CALibrate:AUTO?

Return Format: Integer

Attribute Summary: Preset State: ON
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: Auto head calibration mode is supported only for certain Hewlett-Packard SCSI Direct-
Access devices (hard disks). Many disks periodically perform a head recalibration to
assure that the positioning capability is within specification through temperature changes
and over time. This command is useful for disabling head calibration during medium to
high speed data transfers.

An example of the head calibration schedule of a C2490 disk drive follows:

Time since spin
up (minutes)

Delta (minutes)

0
2 2
4 2
6 2
8 2
10 2
12 2
15 3
18 3
22 4
27 5
33 6
42 9
60 18
100 40
160 60
220 60
etc etc

226

SCPI Command Reference
Agilent N2216A SCPI Commands

Caution If auto calibration is disabled for a period of time longer than the device finds acceptable
(in the instance of the C2490 this is twice the time in the table), writes to the device may
be disabled or the device may force a head calibration to be done without regard to the
state of the auto calibration flag. This may result in an overflow condition due to an
interruption of real-time data flow.

 When any SCSI device is opened, the auto-calibration mode will be enabled.

<Auto Cal Mode> indicates whether the automatic head recalibration mode should be
enabled or disabled.

This command generates an error if the device is not currently open.

This command is not available for SCSI devices that are not Hewlett-Packard disks and
will generate an error.

The query returns the current state of the automatic head calibration mode for the device:
0=OFF, 1=ON.

227

SCPI Command Reference
Agilent N2216A SCPI Commands

MMEMory:SCSI[1|2|...|30]:CALibrate[:IMMediate] command

Note This command is provided for backward compatability with models HP E1562A/B/C
(which use HP-manufactured disk drives) and application software designed to support
them. Using this command with the non-HP-manufactured disk drives (including those in
the Agilent N2216A) results in no action.

Performs head calibration on an HP disk drive.

Command Syntax: MMEMory:SCSI[1|2|...|30]:CALibrate[:IMMediate]

Example

Statements:

OUTPUT 70918;":MMEMORY:SCSI8:CALIBRATE:IMMEDIATE"
OUTPUT 70918;"mmem:scsi:cal"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: This command is intended only for certain Hewlett-Packard SCSI Direct-Access devices
(hard disks). Many disks periodically perform a head recalibration to assure that the
positioning capability is in specification through temperature changes and over time.
This command will force certain Hewlett-Packard supported disks to perform a head
calibration immediately. This command is useful before starting a high speed data
transfer. It is not useful when the data transfer rate will be significantly less than the
disk’s sustained media transfer rate.

This command generates an error if the device is not currently open.

228

SCPI Command Reference
Agilent N2216A SCPI Commands

MMEMory:SCSI[1|2|...|30]:CALibrate:TIME? query

Note This command is provided for backward compatability with models HP E1562A/B/C
(which use HP-manufactured disk drives) and application software designed to support
them. Using this command with the non-HP-manufactured disk drives (including those in
the Agilent N2216A) returns a value of 9,999,999.

Returns the time until the next head calibration.

Query Syntax: MMEMory:SCSI[1|2|...|30]:CALibrate:TIME?

Example

Statements:

OUTPUT 70918;":MMEMORY:SCSI7:CALibrate:TIME?"
OUTPUT 70918;"mmem:scsi7:cal:time?"

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: This command will work on HP disk drives only. It is a good idea to check the time
remaining until the next calibration before starting a long throughput. If the time is short,
send the MMEM:SCSI:CAL command to each of the devices in the Session and send this
query again. If the time is still short, wait for the disks to be spun up for a longer length of
time. See the MMEM:SCSI:CAL:AUTO command for a schedule of calibration times.

This query generates an error if the device is not currently open.

229

SCPI Command Reference
Agilent N2216A SCPI Commands

MMEMory:SCSI[1|2|...|30]:CAPacity? query

Returns the number of logical blocks on an open SCSI device.

Query Syntax: MMEMory:SCSI[1|2|...|30]:CAPacity?

Example

Statements:

OUTPUT 70918;":MMEMORY:SCSI7:CAPACITY?"
OUTPUT 70918;"mmem:scsi7:cap?"

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: The returned value is the number of available logical blocks for any SCSI device that has
been opened by the MMEM:SCSI:OPEN command. All Direct-Access SCSI devices
(disks) support this capability and will return a meaningful result. Other types of devices
may not be able to provide any meaningful information and will return 4294967295.

The size, in bytes, of each logical block can be determined by sending the
MMEM:SCSI:BSIZe? query. By using the combination of both commands and multiplying
their results you can determine the total byte capacity of the device.

This command generates an error if the device is not currently open.

230

SCPI Command Reference
Agilent N2216A SCPI Commands

MMEMory:SCSI[1|2|...|30]:CLOSe command

Closes an open SCSI device.

Command Syntax: MMEMory:SCSI[1|2|...|30]:CLOSe

Example

Statements:

OUTPUT 70918;":MMEM:SCSI2:CLOS"
OUTPUT 70918;"mmemory:scsi20:close"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: Use of this command will make the specified logical device descriptor unavailable for use
with other commands. If a SCSI device has been opened more than once using different
logical device descriptors, it will need to be closed more than once. An error will be
returned if the device is not currently open.

If the MMEM:SCSI:CLOS command is sent while the logical descriptor is in use in a
TUNIT or SESSION; indeterminate and undesirable results will occur.

231

SCPI Command Reference
Agilent N2216A SCPI Commands

MMEMory:SCSI[1|2|...|30]:EBYPass [:STATe] command/query

Sets or queries the Erase Bypass Mode of an open SCSI device.

Command Syntax: MMEMory:SCSI[1|2|...|30]:EBYPass[:STATe] <Erase Mode>

<Erase Mode>::=ON|OFF

Example

Statements:

OUTPUT 70918;":MMEMORY:SCSI16:EBYPASS ON"
OUTPUT 70918;"mmem:scsi22:ebyp:stat OFF"

Query Syntax: MMEMory:SCSI[1|2|...|30]:EBYPass[:STATe]?

Return Format: Integer

Attribute Summary: Preset State: OFF
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: Erase bypass mode is supported only by certain magneto-optical disks that require an
erase before write. This mode must only be enabled when the media has never been
written to, or if an erase has already been performed in the area to be written.

Caution When erase bypass mode is active, a write command to a non-erased block on a device
will fail and the data will be lost. In addition, the error correction bits on the device will
be corrupted making the block unreadable.

This command generates an error if the device is not currently open or if the device does
not support erasing.

<Erase Mode> indicates whether the erase bypass mode should be enabled or disabled.
The value upon opening a device is OFF or disabled.

The query returns the current state of the erase bypass mode for the device: 0=OFF,
1=ON.

232

SCPI Command Reference
Agilent N2216A SCPI Commands

MMEMory:SCSI[1|2|...|30]:ERASe command

Erase blocks on an open SCSI device.

Command Syntax: MMEMory:SCSI[1|2|...|30]:ERASe <Address>, <Length>

<Address>::=number
limits: 0:4294967295

<Length>::=number
limits: 0:4294967295

Example

Statements:

OUTPUT 70918;":MMEM:SCSI15:ERAS #H1CC00,#H200"
OUTPUT 70918;"mmemory:scsi3:erase 117760,512"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: This command should be sent only for certain magneto-optical devices. It is used to
speed up writes to these types of devices that require an erase before write. This
command should be used in conjunction with the command MMEM:SCSI:EBYP.

Caution Any block that has been erased cannot be read. The erasure removes data as well as the
error correction bits on the media. A read of media without correction bits will fail.

<Address> is the logical block number at which to start erasing.

<Length> is the number of logical blocks to erase.

This command generates an error if the device is not currently open or if the device does
not support erasing.

This command does not have a query form.

233

SCPI Command Reference
Agilent N2216A SCPI Commands

MMEMory:SCSI[1|2|...|30]:OPEN command/query

Opens a SCSI device.

Command Syntax: MMEMory:SCSI[1|2|...|30]:OPEN <Controller>, <Bus address>,
<Device unit>, <Mode>

<Controller>::=A|B

<Bus address>::=number
limits: 0:15

<Device unit>::=number
limits: 0:7

<Mode>::=number
limits: 0:4294967295

Example

Statements:

OUTPUT 70918;":MMEM:SCSI5:OPEN A,5,0,#H40"
OUTPUT 70918;"mmemory:scsi2:open b,0,0,#he8"

Query Syntax: MMEMory:SCSI[1|2|...|30]:OPEN?

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: This command opens the logical device descriptor specified by the subopcode [1|2|...|30]
on the SCSI node.

The following conditions generate an error:

• This logical descriptor is already open.

• No device responds at the address specified by <Controller>, <Bus address>, <Device
unit>.

• The device at the designated address is not a block-oriented, mass storage device.

With no other errors, the device is opened and ready for use in other commands.

The query version of this command requires no parameters. It returns 0 if the logical
device descriptor is not currently open and 1 if the logical descriptor is already open.

<Controller> is A or B indicating to which SCSI controller the device is connected. The A
or B corresponds to the A or B on the front-panel of the module.

<Bus address> is 0-15 indicating the SCSI logical address.

<Device unit> is 0-7 indicating the logical unit number. The logical unit number for all
Agilent N2216A devices is 0. Some external devices may have other logical unit numbers.

234

SCPI Command Reference
Agilent N2216A SCPI Commands

<Mode> is an unsigned integer representing a bitfield that indicates various options for
the device. Bits in the <Mode> field are:

In order to specify more than one of the above modes, add the desired bit values together
to obtain the mode value to send to the Agilent N2216A.

SCSI devices may be opened more than once via different logical device descriptors
(represented by the subopcode in the command), but the mode field specified the first
time a device is opened is used for all successive times it is opened even if the specified
value is different. Any device that is opened multiple times, must also be closed multiple
times.

Mode Bitfield Description

Bits

Decimal
Hexa-

decimal

TM_verifyAfterWrite Performs a medium verification after every write. Not supported
for sequential devices.

1 0x001

TM_reserve Do not allow other SCSI initiators to access the device while it is
open.

2 0x002

TM_preventRemoval For devices with removable media, do not allow the media to be
removed while the device is open.

4 0x004

TM_ejectOnClose For devices with removable media, eject the media when the
device is closed. For fixed-media devices, spin down the drive
when it is closed.

8 0x008

TM_writeWithoutErase For optical memory devices, disable the erase-before-write to
increase speed of writes. See SCPI commands
MMEM:SCSI:ERAS and MMEM:SCSI:EBYP for warnings about
this mode.

16 0x010

TM_asynchronousTransfer Use asynchronous instead of synchronous transfers to the device.
This cuts the max transfer rate in half.

32 0x020

TM_preventDisconnect Do not allow the device to disconnect while doing certain
operations. This is slightly faster than allowing disconnect.

64 0x040

TM_dontStartUnit Do not spin up a disk. Reads and writes will cause errors under
these conditions but the disks may be configured to spin up on
powerup. This bit is good for a quick check for which devices are
present without waiting for a spin up.

256 0x100

TM_readOnly Return an error if any write to the device is attempted. 512 0x200

235

SCPI Command Reference
Agilent N2216A SCPI Commands

MMEMory:SCSI[1|2|...|30]:TEMPerature? query

Note This command is provided for backward compatability with models HP E1562A/B/C
(which use HP-manufactured disk drives) and application software designed to support
them. Using this command with the non-HP-manufactured disk drives (including those in
the Agilent N2216A) returns a value 1.0� C (first integer = 1, second integer = 0).

Returns the temperature of an HP disk drive

Query Syntax: MMEMory:SCSI[1|2|...|30]:TEMPerature?

Example

Statements:

OUTPUT 70918;":MMEMORY:SCSI4:TEMPERATURE?"
OUTPUT 70918;"mmemory:scsi23:temp?"

Return Format: Integer
Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: This command is supported for certain Hewlett-Packard disk drives only. Two integer
values are returned. The first integer represents the temperature in degrees Centigrade.
The second integer represents the fractional part of an additional degree and is
designated as the number of 256ths of a degree.

Absolute accuracy of temperate is ±5� C.

236

SCPI Command Reference
Agilent N2216A SCPI Commands

MMEMory:SESSion[1|2|...|12]:ADD command

Adds a Transfer Unit to a Session.

Command Syntax: MMEMory:SESSion[1|2|...|12]:ADD <Transfer Unit>, <Count>

<Transfer Unit>::=number
limits: 1:15

<Count>::=number
limits: 1:33554430

Example

Statements:

OUTPUT 70918;":MMEMORY:SESSION12:ADD 5,26974"
OUTPUT 70918;"mmemory:session:add 12,#h7fff"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: All data transfers, including Sequences, are performed using Sessions. A Session may
contain no more than 15 Transfer Units. This command adds a Transfer Unit to the
specified Session. The Session can be cleared using the MMEM:SESS:DEL:ALL
command.

Every Transfer Unit that is added to a Session must contain the same number of SCSI
devices. If each Transfer Unit in a Session is made up of a single device, each device must
be on the same SCSI controller. This command generates an error if these constraints are
not met.

<Transfer Unit> determines which logical Transfer Unit is to be added to the SESSION.
Transfer units are always added to the end of the current list of Transfer Units. The
command generates an error if the Transfer Unit is not currently open. A Transfer Unit
may be included in more than one Session. It is also permissible to include the same
Transfer Unit more than once in a single Session, although there is no good reason to do
so.

<Count> is the number of logical blocks to transfer to or from this Transfer Unit before
switching to the next Transfer Unit in the Session. The size of a logical block can be
determined by sending the MMEM:SCSI:BSIZ? query. When there are multiple Transfer
Units in the Session, <Count> should be chosen such that the total number of bytes
written at one time is less than or equal to the number of bytes of cache contained on the
device(s). If the Transfer Unit contains two devices, <Count> specifies the number of
logical blocks to be written to or read from the pair of devices, half of which will be
written to or read from an individual device. The largest value of <Count> for disk drives
is 65535 per disk drive, or 131070 for a pair of disk drives.

237

SCPI Command Reference
Agilent N2216A SCPI Commands

MMEMory:SESSion[1|2|...|12]:COPY command

Copies data from one Session to another.

Command Syntax: MMEMory:SESSion[1|2|...|12]:COPY <Destination Session>, <Count>

<Destination Session>::=number
limits: 1:12

<Count>::=number
limits: 1:4294967295

Example

Statements:

OUTPUT 70918;":MMEMORY:SESSION2:COPY 10,#H40000"
OUTPUT 70918;"mmemory:session:copy 1,262144"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: This command copies the contents of a Session (which may be split width-wise across
two devices and/or length-wise across N Transfer Units) to another Session. The Session
may consist of a single Transfer Unit or even a single SCSI device. It is even possible to
copy data from one part of a device to another part of the same device as long as the
copied data does not overlap the original data. Both Sessions must have been properly
initialized using open Transfer Units and open SCSI devices. This command provides a
convenient means to backup a previously acquired throughput Session, or to recombine a
throughput Session that was split lengthwise and/or widthwise into a linear file.

Data is read from one Session into the Agilent N2216A FIFO; then data is written to the
destination Session.

<Destination Session> is the destination Session of the copy. An error will be generated if
the Session does not contain any Transfer Units.

<Count> is the number of logical disk blocks to copy. It refers to the number of logical
blocks on the source Session since it is possible to have different sized logical blocks
between the source Session and the destination Session. The size of a logical block for a
given device can be obtained by sending the MMEM:SCSI:BSIZ query.

The expected backup performance is greater than the total time required for source plus
destination device access.

238

SCPI Command Reference
Agilent N2216A SCPI Commands

MMEMory:SESSion[1|2|...|12]:DELete:ALL command

Deletes all Transfer Units from the specified Session.

Command Syntax: MMEMory:SESSion[1|2|...|12]:DELete:ALL

Example

Statements:

OUTPUT 70918;":MMEMORY:SESSION:DELETE:ALL"
OUTPUT 70918;"mmem:sess3:del:all"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: All Transfer Units are removed from the Session definition. The Transfer Units are NOT
closed. To close the Transfer Units send the command MMEM:TUN:CLOS.

239

SCPI Command Reference
Agilent N2216A SCPI Commands

MMEMory:SESSion[1|2|...|12]:READ:BUFFer command

Reads data from a Session into a memory buffer.

Command Syntax: MMEMory:SESSion[1|2|...|12]:READ:BUFFer <Count>, <Offset>,
<Memory Space>

<Count>::=number
limits: 1:4294967295

<Offset>::=number
limits: 0:4294967295

<Memory Space>::=A24|A32|SRAM

Example

Statements:

OUTPUT 70918;":MMEM:SESS6:READ:BUFF 256,131072,SRAM"
OUTPUT 70918;"mmem:sess1:read:buff #H200,3354430,A32"

Attribute Summary: Preset State: not applicable
Synchronization Required: yes
SCPI Compliance: instrument-specific

Description: The memory buffer may be in the A24, A32 or Agilent N2216A shared RAM memory
spaces. The A16 memory space is not usable, due to the limited addressable area
available in that memory space. MMEM:SESS:SEEK may be used to position the Session
to where the read will take place. All data transfers to the buffer are done using D16.

<Count> specifies the number of logical blocks to read from the Session and copy to the
specified memory space. If the Session contains Transfer Units that consist of two SCSI
devices, count must be an even number or the data transfer will be indeterminate.

<Offset> specifies where in the memory space, the data will be written. The value is an
offset in bytes from the beginning of the address space. It is up to the user to make sure
that there is enough space available starting at this offset in which to write the data. All
address spaces start at offset 0. A24 has an upper limit of 16777215, A32 has an upper
limit of 4294967295, SRAM has an upper limit of 262143. The value of offset must be
divisible by 2.

<Memory Space> specifies the memory space into which to copy the data. The memory
spaces that make sense for this command are A24, A32, and SRAM. SRAM indicates the
Agilent N2216A shared RAM.

240

SCPI Command Reference
Agilent N2216A SCPI Commands

MMEMory:SESSion[1|2|...|12]:READ:FIFO command

Reads data from a SCSI Session into a FIFO.

Command Syntax: MMEMory:SESSion[1|2|...|12]:READ:FIFO <Count>, <Offset>, <Memory Space>,
<FIFO width>

<Count>::=number
limits: 1:4294967295

<Offset>::=number
limits: 0:4294967295

<Memory Space>::=A16|A24|A32|SRAM

<FIFO width>::=number
limits: 16|32

Example

Statements:

OUTPUT 70918;":MMEMORY:SESSION8:READ:FIFO 32768,#HDA2A,A16,16"
OUTPUT 70918;"mmemory:session:read:fifo 128,#h280040,A24,32"

Attribute Summary: Preset State: not applicable
Synchronization Required: yes
SCPI Compliance: instrument-specific

Description: The FIFO may be in the A16, A24, A32 or Agilent N2216A shared RAM memory spaces.
MMEM:SESS:SEEK may be used to position the Session to where the read will take place.
This command differs from MMEM:SESS:READ:BUFF in that the offset is not
incremented 	 every write to the FIFO is at the same offset in the memory space.

<Count> specifies the number of SCSI logical blocks to read from the Session and copy to
the specified memory space. If the Session contains Transfer Units that consist of two
SCSI devices, count must be an even number or the data transfer will be indeterminate.

<Offset> specifies where in the memory space, the data will be written. The value is an
offset in bytes from the beginning of the address space. All address spaces start at offset
0. A16 has an upper limit of 65535, A24 has an upper limit of 16777215, A32 has an upper
limit of 4294967295, SRAM has an upper limit of 262143. The value of offset must be
divisible by 2.

<Memory Space> specifies into which memory space to copy the data. The memory
spaces are A16, A24, A32, and SRAM. SRAM indicates the Agilent N2216A shared RAM.

<FIFO width> indicates the number of bits in each element of the FIFO. The only
acceptable values are 16 and 32. All writes to the FIFO are done using D16, thus a 32 bit
FIFO consists of two writes.

241

SCPI Command Reference
Agilent N2216A SCPI Commands

MMEMory:SESSion[1|2|...|12]:SEEK command

Sets up all devices in a Session to allow the next data transfer to begin at the specified
block number.

Command Syntax: MMEMory:SESSion[1|2|...|12]:SEEK <Block>

<Block>::=number
limits: 0:4294967295

Example

Statements:

OUTPUT 70918;":MMEM:SESS11:SEEK 8191"
OUTPUT 70918;"mmemory:session4:seek #h1FFF"

Attribute Summary: Preset State: not applicable
Synchronization Required: yes
SCPI Compliance: instrument-specific

Description: This command sets the current position of the Session to be offset to the specified logical
block from the beginning of the Session. If Transfer Units in the Session contain two SCSI
devices, the specified logical block must be even. All Transfer Units in the Session will be
positioned such that a MMEM:SESS:READ:*, MMEM:SESS:WRIT:*, or SEQ:BEG will start
at the specified logical block.

The block number specified here does not correspond to a specific logical block number
on a particular device. Rather the block number corresponds to an offset from the logical
block number specified as the beginning logical block when each Transfer Unit was
opened with MMEM:TUN:OPEN. In other words, when a Transfer Unit is opened you can
specify it to begin at some non-zero logical block number. Therefore, specifying a seek to
block zero means that the next data transfer will begin at the first block of the Session.
This corresponds to the non-zero block number specified when each Transfer Unit was
opened. This is also true if a Transfer Unit consists of a single device, such that a single-
device Session may also start at a non-zero block. Furthermore, for Transfer Units that
consist of a pair of SCSI devices, the data is two logical blocks in size and is spread across
the pair of devices alternating two bytes to each device.

242

SCPI Command Reference
Agilent N2216A SCPI Commands

MMEMory:SESSion[1|2|...|12]:SIZE? query

Returns the number of Transfer Units in the Session.

Query Syntax: MMEMory:SESSion[1|2|...|12]:SIZE?

Example

Statements:

OUTPUT 70918;":MMEMORY:SESSION1:SIZE?"
OUTPUT 70918;"mmemory:session7:size?"

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

243

SCPI Command Reference
Agilent N2216A SCPI Commands

MMEMory:SESSion[1|2|...|12]:WRITe:BUFFer command

Writes data to a SCSI Session from a memory buffer.

Command Syntax: MMEMory:SESSion[1|2|...|12]:WRITe:BUFFer <Count>,d <Offset>, <Memory
Space>

<Count>::=number
limits: 1:4294967295

<Offset>::=number
limits: 0:4294967295

<Memory Space>::=A24|A32|SRAM

Example

Statements:

OUTPUT 70918;":MMEMORY:SESSION11:WRITE:BUFFER 16384,#H300AD0,A24"
OUTPUT 70918;"mmemory:session2:write:buffer 64,4608,SRAM"

Attribute Summary: Preset State: not applicable
Synchronization Required: yes
SCPI Compliance: instrument-specific

Description: The memory buffer may be in the A24, A32 or Agilent N2216A shared RAM memory
spaces. The A16 memory space should not be specified, due to the limited addressable
area available in that memory space. MMEM:SESS:SEEK may be used to position the
Session to where the SCSI write will be done. All reads from the buffer are done using
D16.

<Count> specifies the number of logical blocks to write to the Session from the specified
memory space. If the Session contains Transfer Units that consist of two SCSI devices,
count must be an even number or the data transfer will be indeterminate.

<Offset> specifies from where in the memory space the data will be read. The value is an
offset in bytes from the beginning of the address space. You must make sure that there is
enough space available starting at this offset from which to read data. All address spaces
start at offset 0. A24 has an upper limit of 16777215, A32 has an upper limit of 4294967295,
SRAM has an upper limit of 262143. The value of offset must be divisible by 2.

<Memory Space> specifies from which memory space to copy the data. The memory
spaces that make sense for this command are A24, A32, and SRAM. SRAM indicates the
Agilent N2216A shared RAM.

244

SCPI Command Reference
Agilent N2216A SCPI Commands

MMEMory:SESSion[1|2|...|12]:WRITe:FIFO command

Writes data to a SCSI Session from a FIFO.

Command Syntax: MMEMory:SESSion[1|2|...|12]:WRITe:FIFO <Count>, <Offset>,
<Memory Space>, <FIFO width>

<Count>::=number
limits: 1:4294967295

<Offset>::=number
limits: 0:4294967295

<Memory Space>::=A16|A24|A32|SRAM

<FIFO width>::=number
limits: 16|32

Example

Statements:

OUTPUT 70918;":MMEMORY:SESSION:WRITE:FIFO 3840,#H20000A800,A32,16"
OUTPUT 70918;"mmemory:session2:write:fifo #F00,#hCC38,A16,32"

Attribute Summary: Preset State: not applicable
Synchronization Required: yes
SCPI Compliance: instrument-specific

Description: The FIFO may be in the A16, A24, A32 or Agilent N2216A shared RAM memory spaces.
MMEM:SESS:SEEK may be used to position the Session to where the write will be done.
This command differs from MMEM:SESS:WRIT:BUFF in that the offset is not
incremented 	 every FIFO read is at the same offset in the memory space.

<Count> specifies the number of SCSI logical blocks to write to the Session from the
specified memory space. If the Session contains Transfer Units that consist of two SCSI
devices, count must be an even number or the data transfer will be indeterminate.

<Offset> specifies from where in the memory space the data will be read. The value is an
offset in bytes from the beginning of the address space. All address spaces start at offset
0. A16 has an upper limit of 65535, A24 has an upper limit of 16777215, A32 has an upper
limit of 4294967295, SRAM has an upper limit of 262143. The value of offset must be
divisible by 2.

<Memory Space> specifies from which memory space to copy the data. The memory
spaces that make sense for this command are A16, A24, A32, and SRAM. SRAM indicates
the Agilent N2216A shared RAM.

<FIFO width> indicates the number of bits in each element of the FIFO. The only
acceptable values are 16 and 32. All reads from the FIFO are done using D16, thus a 32 bit
FIFO consists of two reads.

245

SCPI Command Reference
Agilent N2216A SCPI Commands

MMEMory:TUNit[1|2|...|15]:CLOSe command

Closes an open Transfer Unit.

Command Syntax: MMEMory:TUNit[1|2|...|15]:CLOSe

Example

Statements:

OUTPUT 70918;":MMEMORY:TUNIT12:CLOSE"
OUTPUT 70918;"mmemory:tunit:close"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: An error will be generated if the Transfer Unit is not currently open.

This command only disassociates individual SCSI devices from this Transfer Unit. The
underlying SCSI devices will not be closed with this command. The SCSI devices must be
closed later with the MMEM:SCSI:CLOS command.

246

SCPI Command Reference
Agilent N2216A SCPI Commands

MMEMory:TUNit[1|2|...|15]:OPEN command/query

Opens a Transfer Unit given the underlying SCSI devices and starting logical block
numbers.

Command Syntax: MMEMory:TUNit[1|2|...|15]:OPEN <Device1>, <Block1>[,<Device2>, <Block2>]

<Device1>::=number
limits: 1:30

<Block1>::=number
limits: 0:4294967295

<Device2>::=number
limits: 0:30

<Block2>::=number
limits: 0:4294967295

Example

Statements:

OUTPUT 70918;":MMEMORY:TUNIT2:OPEN 20,0,0,0"
OUTPUT 70918;"mmem:tun13:open 3,2048,1,2048"

Query Syntax: MMEMory:TUNit[1|2|...|15]:OPEN?

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: <Device1> is the logical device number used in a previous call to MMEM:SCSIx:OPEN,
where x is the value to use here. An error will be generated if the logical device
MMEM:SCSIx is not currently open.

<Block1> is the SCSI logical block number specifying the beginning position on the
device specified by <Device1>. It will be impossible for MMEM:TUN:* commands or
MMEM:SESS:* commands using this MMEM:TUN to reference SCSI logical blocks
smaller than the number specified here.

<Device2> is the logical device number used in a previous call to MMEM:SCSIx:OPEN. If
the Transfer Unit is to be opened using only a single device this field must be set to 0. An
error will be generated if the logical device MMEM:SCSIx is not currently open or if
<Device1> and <Device2> are on the same SCSI bus. For a split pair <Device1> must be
on the SCSI A bus and <Device2> must be on the SCSI B bus.

<Block2> is the SCSI logical block number specifying the beginning position on the
device specified by <Device2>. For a single-device Transfer Unit, this field should be set
to 0.

The query version of this command requires no parameters. It returns 0 if the logical
Transfer Unit is not currently open and 1 if the logical Transfer Unit is open.

It is possible to use a single open SCSI device in more than one Transfer Unit, but it is
important that all Transfer Units in a Session include an individual SCSI device only once.
By including two SCSI units in a Transfer Unit, 32-bit data may be transferred by splitting
the data across two devices in such a way as to make the upper 16 bits go to one device
and the lower 16 bits of the quantity go to another device. This type of data splitting
requires that the two devices be on different SCSI controllers. If two SCSI devices are
used in the Transfer Unit, they must both have the same blocksize. The blocksize can be
determined by sending the MMEM:SCSI:BSIZ? command.

247

SCPI Command Reference
Agilent N2216A SCPI Commands

SEQuence[1|2|3|4]:ADD command

Append an operation to the specified Sequence.

Command Syntax: SEQuence[1|2|3|4]:ADD <Operation>, <Count>, <Address>, <Misc>

<Operation>::=number
limits: 0:65535

<Count>::=number
limits: 0:4294967295

<Address>::=number
limits: 0:4294967295

<Misc>::=number
limits: 0:4294967295

Example

Statements:

OUTPUT 70918;"SEQUENCE:ADD #h1000,#h10,0,#h03000800"
OUTPUT 70918;"seq3:add #h3012,65536,2048,0"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: Add the specified operation to the end of the specified Sequence. The maximum number
of operations in a single Sequence is 100. The number of operations currently in the
Sequence may be determined by sending the SEQ:SIZE? command.

The list of Sequence operations should be cleared by sending the SEQ:DEL:ALL command
before adding new Sequence operations using this command.

Note For a list and detailed description of all Sequence operations that may be added using this
command and an explanation of the above parameters see “Sequence Operations
Reference” starting on page 139.

248

SCPI Command Reference
Agilent N2216A SCPI Commands

SEQuence[1|2|3|4]:BEGin command

Begin a Sequence for throughput or playback data transfer.

Command Syntax: SEQuence[1|2|3|4]:BEGin <Type>, <Byte Count>, <Session>

<Type>::=THRoughput|VPLayback|LPLayback|MTHRoughput|MPLayback

<Byte Count>::=number
limits: 1:9223372036854775807

<Session>::=number
limits: 1:12

Example

Statements:

OUTPUT 70918;":SEQ:BEG VPL,262144,1"
OUTPUT 70918;"sequence3:begin throughput,#h200000000,2"

Attribute Summary: Preset State: not applicable
Synchronization Required: yes
SCPI Compliance: instrument-specific

Description: Begin execution of the specified Sequence. A Session must already be set up before
sending this command. See the commands MMEM:SESS:*.

<Type> indicates whether the Sequence will be a throughput or a playback. The internal
software needs to be told this in order to get data flowing in the right direction. It also
needs to be told whether a playback will be to the VXI bus, or to the LBUS, and whether
block and frame markers will be saved with the data on a throughput or restored on a
playback.

<Byte Count> is a 64-bit integer that indicates the total number of bytes that will be
transferred by the Sequence. Once this byte count is reached, the Sequence will
terminate. This byte count is used to determine how many SCSI logical blocks will be
transferred to/from the devices. The software will round up to the next even number of
logical blocks

<Session> indicates which Session will be used for this Sequence. The commands to
initialize the Session must already have been successfully sent to the module. See
MMEM:SESS:*.

Transfer type name Transfer action performed

THRoughput Throughput without block and frame markers. Data may subsequently be played back with
either VPLayback or LPLayback.

VPLayback VXI playback only. For use with data previously transferred with THRoughput.

LPLayback Local bus playback only without block and frame markers. For data previously transferred
with THRoughput.

MTHRoughput Throughput in which all local bus data will have the block and frame markers embedded in
the data stream. Data acquired via MTHROUGHPUT may only be played back using
MPLAYBACK.

MPLayback Local bus playback that will reconstruct the block and frame markers from information in
the data stream. For use with data previously transferred with MTHRoughput.

249

SCPI Command Reference
Agilent N2216A SCPI Commands

SEQuence[1|2|3|4]:DELete:ALL command

Remove all elements from the specified Sequence list.

Command Syntax: SEQuence[1|2|3|4]:DELete:ALL

Example

Statements:

OUTPUT 70918;":SEQUENCE4:DELETE:ALL"
OUTPUT 70918;"seq2:del:all"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: Delete all elements of the Sequence. This is the only command that removes elements
from a Sequence. You should send this command before beginning to add elements to a
Sequence.

250

SCPI Command Reference
Agilent N2216A SCPI Commands

SEQuence[1|2|3|4]:SIZE? query

Return the number of elements in the Sequence.

Query Syntax: SEQuence[1|2|3|4]:SIZE?

Example

Statements:

OUTPUT 70918;":SEQ2:SIZE?"
OUTPUT 70918;"sequence:size?"

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: The number returned should equal the number of times SEQ:ADD has been sent since the
last SEQ:DEL:ALL, *RST, or powerup. The maximum number of elements in a Sequence
is 100.

251

SCPI Command Reference
Agilent N2216A SCPI Commands

SEQuence[1|2|3|4]:TRANsferred? query

Return the number of bytes transferred in the Sequence.

Query Syntax: SEQuence[1|2|3|4]:TRANsferred?

Example

Statements:

OUTPUT 70918;":SEQUENCE2:TRANSFERRED?"
OUTPUT 70918;"seq4:tran?"

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: If the Sequence completed without errors and was not aborted, the returned value will be
almost equal to the number of bytes specified with the SEQ:BEG command. Otherwise,
the returned value will indicate the number of bytes that were successfully transferred.

252

SCPI Command Reference
Agilent N2216A SCPI Commands

STATus:OPERation:CONDition? query

Reads the Operation Status condition register.

Query Syntax: STATus:OPERation:CONDition?

Example

Statements:

OUTPUT 70918;":STATUS:OPERATION:CONDITION?"
OUTPUT 70918;"status:operation:condition?"

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: confirmed

Description: This query returns the sum of the decimal weights of all bits currently set to 1 in the
Operation Status condition register. (The decimal weight of a bit is 2n, where n is the bit
number.)

See Operation Status Register Set on page 194 for a definition of bits in the register set.

253

SCPI Command Reference
Agilent N2216A SCPI Commands

STATus:OPERation:ENABle command/query

Sets and queries bits in the Operation Status enable register.

Command Syntax: STATus:OPERation:ENABle <Bit Mask>

<Bit Mask>::=number
limits: 0:32767

Example

Statements:

OUTPUT 70918;":STATUS:OPER:ENAB 304"
OUTPUT 70918;"status:operation:enable 32"

Query Syntax: STATus:OPERation:ENABle?

Return Format: Integer

Attribute Summary: Preset State: not affected by Preset
Synchronization Required: no
SCPI Compliance: confirmed

Description: To set a single bit in the Operation Status enable register to 1, send the bit’s decimal
weight with this command. To set more than one bit to 1, send the sum of the decimal
weights of all the bits. (The decimal weight of a bit is 2n, where n is the bit number.)

All bits are initialized to 0 on powerup or when the STAT:PRES command is sent.
However, the current setting of bits is not modified when you send the *RST command.

See Operation Status Register Set on page 194 for a definition of bits in the register set.

254

SCPI Command Reference
Agilent N2216A SCPI Commands

STATus:OPERation[:EVENt]? query

Reads and clears the Operation Status event register.

Query Syntax: STATus:OPERation[:EVENt]?

Example

Statements:

OUTPUT 70918;":STATUS:OPERATION?"
OUTPUT 70918;"stat:oper:even?"

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: confirmed

Description: This query returns the sum of the decimal weights of all bits currently set to 1 in the
Operation Status event register. (The decimal weight of a bit is 2n, where n is the bit
number.)

Note The Operation Status event register is automatically cleared after it is read by this query.

See Operation Status Register Set on page 194 for a definition of bits in the register set.

255

SCPI Command Reference
Agilent N2216A SCPI Commands

STATus:OPERation:NTRansition command/query

Sets and queries bits in the Operation Status negative transition register.

Command Syntax: STATus:OPERation:NTRansition <Bit mask>

<Bit mask>::=number
limits: 0:32767

Example

Statements:

OUTPUT 70918;":STAT:OPER:NTR 256"
OUTPUT 70918;"status:operation:ntransition 48"

Query Syntax: STATus:OPERation:NTRansition?

Return Format: Integer

Attribute Summary: Preset State: not affected by Preset
Synchronization Required: no
SCPI Compliance: confirmed

Description: To set a single bit in the Operation Status negative transition register to 1, send the bit’s
decimal weight with this command. To set more than one bit to 1, send the sum of the
decimal weights of all the bits. (The decimal weight of a bit is 2n, where n is the bit
number.)

All bits are initialized to 0 on powerup or when the STAT:PRES command is sent.
However, the current setting of bits is not modified when you send the *RST command.

See Operation Status Register Set on page 194 for a definition of bits in the register set.

256

SCPI Command Reference
Agilent N2216A SCPI Commands

STATus:OPERation:PTRansition command/query

Sets and queries bits in the Operation Status positive transition register.

Command Syntax: STATus:OPERation:PTRansition <Bit mask>

<Bit mask>::=number
limits: 0:32767

Example

Statements:

OUTPUT 70918;":STAT:OPER:PTR 304"
OUTPUT 70918;"status:operation:ptransition 32"

Query Syntax: STATus:OPERation:PTRansition?

Return Format: Integer

Attribute Summary: Preset State: not affected by Preset
Synchronization Required: no
SCPI Compliance: confirmed

Description: To set a single bit in the Operation Status positive transition register to 1, send the bit’s
decimal weight with this command. To set more than one bit to 1, send the sum of the
decimal weights of all the bits. (The decimal weight of a bit is 2n, where n is the bit
number.)

All bits are initialized to 1 on powerup or when the STAT:PRES command is sent.
However, the current setting of bits is not modified when you send the *RST command.

See Operation Status Register Set on page 194 for a definition of bits in the register set.

257

SCPI Command Reference
Agilent N2216A SCPI Commands

STATus:PRESet command

Sets bits in most enable and transition registers to their default state.

Command Syntax: STATus:PRESet

Example

Statements:

OUTPUT 70918;":STATUS:PRESET"
OUTPUT 70918;"stat:pres"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: confirmed

Description: STATUS:PRESet has the effect of bringing all events to the second level register sets
(Questionable Status and Operation Status) without creating an SRQ or reflecting events
in a serial poll.

It also affects these register sets (Questionable Status and Operation Status) as follows:

• Sets all enable register bits to 0.

• Sets all positive transition register bits to 1.

• Sets all negative transition register bits to 0.

258

SCPI Command Reference
Agilent N2216A SCPI Commands

STATus:QUEStionable:CONDition? query

Reads the Questionable Status condition register.

Query Syntax: STATus:QUEStionable:CONDition?

Example

Statements:

OUTPUT 70918;":STAT:QUES:COND?"
OUTPUT 70918;"status:questionable:condition?"

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: confirmed

Description: This query returns the sum of the decimal weights of all bits currently set to 1 in the
Questionable Status condition register. (The decimal weight of a bit is 2n, where n is the
bit number.)

See Questionable Status Register Set on page 192 for a definition of bits in the register set.

259

SCPI Command Reference
Agilent N2216A SCPI Commands

STATus:QUEStionable:ENABle command/query

Sets and queries bits in the Questionable Status enable register.

Command Syntax: STATus:QUEStionable:ENABle <Bit Mask>

<Bit Mask>::=number
limits: 0:32767

Example

Statements:

OUTPUT 70918;":STAT:QUES:ENAB 256"
OUTPUT 70918;"status:questionable:enable 512"

Query Syntax: STATus:QUEStionable:ENABle?

Return Format: Integer

Attribute Summary: Preset State: not affected by Preset
Synchronization Required: no
SCPI Compliance: confirmed

Description: To set a single bit in the Questionable Status enable register to 1, send the bit’s decimal
weight with this command. To set more than one bit to 1, send the sum of the decimal
weights of all the bits. (The decimal weight of a bit is 2n, where n is the bit number.)

All bits are initialized to 0 on powerup or when the STAT:PRES command is sent.
However, the current setting of bits is not modified when you send the *RST command.

See Questionable Status Register Set on page 192 for a definition of bits in the register set.

260

SCPI Command Reference
Agilent N2216A SCPI Commands

STATus:QUEStionable[:EVENt]? query

Reads and clears the Questionable Status event register.

Query Syntax: STATus:QUEStionable[:EVENt]?

Example

Statements:

OUTPUT 70918;":STATUS:QUESTIONABLE:EVENT?"
OUTPUT 70918;"status:questionable?"

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: confirmed

Description: This query returns the sum of the decimal weights of all bits currently set to 1 in the
Questionable Status event register. (The decimal weight of a bit is 2n, where n is the bit
number.)

Note The Questionable Status event register is automatically cleared after it is read by this
query.

See Questionable Status Register Set on page 192 for a definition of bits in the register set.

261

SCPI Command Reference
Agilent N2216A SCPI Commands

STATus:QUEStionable:NTRansition command/query

Sets and queries bits in the Questionable Status negative transition register.

Command Syntax: STATus:QUEStionable:NTRansition <Bit mask>

<Bit mask>::=number
limits: 0:32767

Example

Statements:

OUTPUT 70918;":STAT:QUES:NTR 768"
OUTPUT 70918;"Status:Questionable:Ntransition 256"

Query Syntax: STATus:QUEStionable:NTRansition?

Return Format: Integer

Attribute Summary: Preset State: not affected by Preset
Synchronization Required: no
SCPI Compliance: confirmed

Description: To set a single bit in the Questionable Status negative transition register to 1, send the
bit’s decimal weight with this command. To set more than one bit to 1, send the sum of
the decimal weights of all the bits. (The decimal weight of a bit is 2n, where n is the bit
number.)

All bits are initialized to 0 on powerup or when the STAT:PRES command is sent.
However, the current setting of bits is not modified when you send the *RST command.

See Questionable Status Register Set on page 192 for a definition of bits in the register set.

262

SCPI Command Reference
Agilent N2216A SCPI Commands

STATus:QUEStionable:PTRansition command/query

Sets and queries bits in the Questionable Status positive transition register.

Command Syntax: STATus:QUEStionable:PTRansition <Bit mask>

<Bit mask>::=number
limits: 0:32767

Example

Statements:

OUTPUT 70918;":STATUS:QUESTIONABLE:PTRANSITION 256"
OUTPUT 70918;"stat:ques:ptr 512"

Query Syntax: STATus:QUEStionable:PTRansition?

Return Format: Integer

Attribute Summary: Preset State: not affected by Preset
Synchronization Required: no
SCPI Compliance: confirmed

Description: To set a single bit in the Questionable Status positive transition register to 1, send the bit’s
decimal weight with this command. To set more than one bit to 1, send the sum of the
decimal weights of all the bits. (The decimal weight of a bit is 2n, where n is the bit
number.)

All bits are initialized to 1 on powerup or when the STAT:PRES command is sent.
However, the current setting of bits is not modified when you send the *RST command.

See Questionable Status Register Set on page 192 for a definition of bits in the register set.

263

SCPI Command Reference
Agilent N2216A SCPI Commands

SYSTem:ABORt command

Aborts a data transfer Session and/or Sequence.

Command Syntax: SYSTem:ABORt

Example

Statements:

OUTPUT 70918;":SYSTEM:ABORT"
OUTPUT 70918;"syst:abor"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: Any data transfer Session in progress is aborted. The Session data structures will not be
altered and all Transfer Units and SCSI devices will remain open. The local bus is placed
into the reset state. Any Sequence in progress is aborted. Sequence data structures are
updated such that a SEQ:TRAN? query will correctly indicate the number of bytes actually
transferred during the Sequence.

264

SCPI Command Reference
Agilent N2216A SCPI Commands

SYSTem:COMMunicate:SCSI[:SELF]:ADDRess command/query

Changes the SCSI address on an Agilent N2216A individual SCSI bus controller.

Command Syntax: SYSTem:COMMunicate:SCSI[:SELF]:ADDRess <Controller>,<Bus address>

<Controller>::=A|B

<SCSI address>::=number
limits 0:15

Example

Statements:

OUTPUT 70918;":SYSTEM:COMMUNICATE:SCSI:SELF:ADDRESS A,5"
OUTPUT 70918;"syst:comm:scsi:addr b,13"

Query Syntax: SYSTem:COMMunicate:SCSI:SELF:ADDRess? <Controller>

Return Format: Integer

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: The Agilent N2216A SCSI bus address is an internal address that is set on powerup by
switches CA0 and CA1. When multiple Agilent N2216As are on the same SCSI bus, you
will need to be sure that no two SCSI controllers share the same SCSI bus address before
any SCSI accesses can be performed. This command allows you to query and change the
SCSI address values of the Agilent N2216A, overriding the switch settings. (See
“Installing the Agilent N2216A” starting on page 17 for information on setting the switches
manually.) You will also need to change the Agilent N2216A SCSI address if an external
host or other SCSI device is at the same address as any SCSI bus controller.

The query returns the current address.

Note This address should not be confused with the SCSI logical address of a device that is
designated by MMEM:SCSI:OPEN. The address set by SYST:COMM:SCSI:ADDR is only
used internally by the Agilent N2216A and will not be used by any SCPI commands.

265

SCPI Command Reference
Agilent N2216A SCPI Commands

SYSTem:ERRor? query

Returns one error message from the module’s error queue.

Query Syntax: SYSTem:ERRor?

Example

Statements:

OUTPUT 70918;":SYSTEM:ERROR?"
OUTPUT 70918;"syst:err?"

Return Format: Integer
STRING

Attribute Summary: Preset State: not affected by Preset
Synchronization Required: no
SCPI Compliance: confirmed

Description: The error queue temporarily stores up to 10 error messages. When you send the
SYST:ERR query, one message is moved from the error queue to the output queue so your
controller can read the message. The error queue delivers messages to the output queue
in the order received.

If more than 10 error messages are reported before any are read from the queue, the
oldest error messages are saved. The last error message indicates that too many error
messages were received for the queue.

Note The error queue is cleared when you turn on the VXI system and when you send the *CLS
command.

266

SCPI Command Reference
Agilent N2216A SCPI Commands

 SYSTem:VERSion? query

Returns the SCPI version to which the module complies.

Query Syntax: SYSTem:VERSion?

Example

Statements:

OUTPUT 70918;":SYSTEM:VERSION?"
OUTPUT 70918;"syst:vers?"

Return Format: YYYY.V

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: confirmed

Description: The Ys represent the SCPI year-version and the V represents the revision number for that
year.

The Agilent N2216A will return 1994.0.

267

SCPI Command Reference
Agilent N2216A SCPI Commands

VINStrument[:CONFigure]:LBUS

[:MODE] RESet|NORMal|PIPE command/query

Configures the local bus.

Command Syntax: VINStrument[:CONFigure]:LBUS[:MODE] <Lbus Mode>

<Lbus Mode>::=RESet|PIPE|NORMal

Example

Statements:

OUTPUT 70918;":VINSTRUMENT:CONFIGURE:LBUS:MODE RESET"
OUTPUT 70918;"vins:lbus norm"

Query Syntax: VINStrument[:CONFigure]:LBUS[:MODE]?

Return Format: CHAR

Attribute Summary: Preset State: RESet
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: The local bus interface has strict requirements as to the order in which modules in a VXI
mainframe have their local bus interface reset. On powerup, or whenever any module in
the mainframe is put in the reset state, all modules should be placed into the reset state
from left to right. Then all modules can be put into the un-reset state from left to right.

Sending VINStrument:CONfigure:LBUS:MODE RESet, places the Agilent N2216A local
bus interface into the LBUS RESet state. Sending either PIPE or NORMAL takes the local
bus interface out of the LBUS RESet state. In order for the Agilent N2216A to use the
local bus, the mode must be set to NORMal.

Sending VINStrument:LBUS PIPE puts the local bus interface into a state such that all
local bus data from the module to the left is automatically routed to the module on the
right. This is useful if you want to route local bus data past the Agilent N2216A to other
modules rather than have the Agilent N2216A participate in any local bus throughput or
playback. In this mode, the local bus cannot be used in a Sequence operation, or via the
LBUS:READ:BUFFer or LBUS:WRITe:BUFFer commands. The behavior is undefined if
this value is set to PIPE then a Sequence operation is executed that either reads from or
writes to the local bus.

When transitioning from PIPE to NORMal mode, one additional block will be piped after
the change. In order to make this transition easier to coordinate it is best to reset the
local bus on all modules then go to NORMal.

This command may be used instead of VINStrument:LBUS:RESet to place the Agilent
N2216A local bus in the un-reset state.

268

SCPI Command Reference
Agilent N2216A SCPI Commands

VINStrument:LBUS:RESet command

Resets the local bus.

Command Syntax: VINStrument:LBUS:RESet

Example

Statements:

OUTPUT 70918;":VINSTRUMENT:LBUS:RESET "
OUTPUT 70918;"vins:lbus:res"

Attribute Summary: Preset State: not applicable
Synchronization Required: no
SCPI Compliance: instrument-specific

Description: The local bus interface has strict requirements as to the order in which modules in a VXI
mainframe have their local bus interface reset. On powerup or whenever any module in
the mainframe is put in the reset state, all modules should be placed into the reset state
from left to right. Then all modules can be put into the un-reset state from left to right.

This command toggles the local bus reset state for the Agilent N2216A; first going into the
reset state, then back out. Once this is completed the local bus mode is NORMal.

This command is not required if you use the VINStrument:CONFigure:LBUS:MODE
command to configure the local bus.

269

SCPI Command Reference
Errors

Errors

SCPI Command Errors

Error Number Description

-100 Command error. This is the generic syntax error for devices that cannot detect more specific errors.
This code indicates only that a Command Error as defined in IEEE 488.2, 11.5.1.1.4 has occurred.

-101 Invalid character. A syntactic element contains a character that is invalid for that type; for example, a
header containing an ampersand, SETUP&. This error might be used in place of errors -114, -121, -141,
and perhaps others.

-102 Syntax error. An unrecognized command or data type was encountered; for example, a string was
received when the device does not accept strings.

-103 Invalid separator. The parser was expecting a separator and encountered an illegal character; for
example, the semicolon was omitted after a program message unit, *EMC 1 :CH1:VOLTS 5.

-104 Data type error. The parser recognized a data element different than one allowed; for example, numeric
or string data was expected but block data was encountered.

-105 GET not allowed. A Group Execute Trigger was received within a program message (see IEEE 488.2, 7.7).

-108 Parameter not allowed. More parameters were received than expected for the header; for example, the
*EMC common command only accepts one parameter, so receiving *EMC 0,,1 is not allowed.

-109 Missing parameter. Fewer parameters were received than required for the header; for example, the
*EMC common command requires one parameter, so receiving *EMC is not allowed.

-110 Command header error. An error was detected in the header. This error message is used when the
device cannot detect the more specific errors described for errors -111 through -119.

-111 Header separator error. A character that is not a legal header separator was encountered while parsing
the header; for example, no white space followed the header, thus *GMC”MACRO” is an error.

-112 Program mnemonic too long. The header contains more than twelve characters (see IEE488.2,
7.6.1.4.1).

-113 Undefined header. The header is syntactically correct, but it is undefined for this specific device; for
example, *XYZ is not defined for any device.

-114 Header suffix out of range. The value of a numeric suffix attached to a program mnemonic, see Syntax
and Style section 6.2.5.2, makes the header invalid.

-120 Numeric data error. This error, as well as errors -121 through -129, are generated when parsing a data
element that appears to be numeric, including the nondecimal numeric types. This particular error
message is used if the device cannot detect a more specific error.

-121 Invalid character in number. An invalid character for the data type being parsed was encountered; for
example, an alpha in a decimal numeric or a “9” in octal data.

-123 Exponent too large. The magnitude of the exponent was larger than 32000 (see IEEE 488.2, 7.7.2.4.1).

270

SCPI Command Reference
Errors

-124 Too many digits. The mantissa of a decimal numeric data element contained more than 255 digits
excluding leading zeros (see IEEE 488.2, 7.7.2.4.1).

-128 Numeric data not allowed. A legal numeric data element was received, but the device does not accept
one in this position for the header.

-130 Suffix error. This error, as well as errors -131 through -139, are generated when parsing a suffix. This
particular error message is used if the device cannot detect a more specific error.

-131 Invalid suffix. The suffix does not follow the syntax described in IEEE 488.2, 7.7.3.2, or the suffix is
inappropriate for this device.

-134 Suffix too long. The suffix contained more than 12 characters (see IEEE 488.2, 7.7.3.4).

-138 Suffix not allowed. A suffix was encountered after a numeric element which does not allow suffixes.

-140 Character data error. This error, as well as errors -141 through -149, are generated when parsing a
character data element. This particular error message is used if the device cannot detect a more
specific error.

-141 Invalid character data. Either the character data element contains an invalid character or the particular
element received is not valid for the header.

-144 Character data too long. The character data element contains more than twelve characters (see IEEE
488.2, 7.7.1.4).

-148 Character data not allowed. A legal character data element was encountered where prohibited by the
device.

-150 String data error. This error, as well as errors -151 through -159, are generated when parsing a string
data element. This particular error message is used if the device cannot detect a more specific error.

-151 Invalid string data. A string data element was expected, but was invalid for some reason (see IEEE
488.2, 7.7.5.2); for example, an END message was received before the terminal quote character.

-158 String data not allowed. A string data element was encountered but was not allowed by the device at
this point in parsing.

-160 Block data error. This error, as well as errors -161 through -169, are generated when parsing a block
data element. This particular error message is used if the device cannot detect a more specific error.

-161 Invalid block data. A block data element was expected, but was invalid for some reason (see IEEE
488.2, 7.7.6.2); for example, an END message was received before the length was satisfied.

-168 Block data not allowed. A legal block data element was encountered but was not allowed by the device
at this point in parsing.

-170 Expression error. This error, as well as errors -171 through -179, are generated when parsing an
expression data element. This particular error message is used if the device cannot detect a more
specific error.

-171 Invalid expression. The expression data element was invalid (see IEEE 488.2, 7.7.7.2); for example,
unmatched parentheses or an illegal character.

SCPI Command Errors

Error Number Description

271

SCPI Command Reference
Errors

-178 Expression data not allowed. A legal expression data was encountered but was not allowed by the
device at this point in parsing.

-181 Invalid outside macro definition. Indicates that a macro parameter placeholder ($<number) was
encountered outside of a macro definition.

-183 Invalid inside macro definition. Indicates that the program message unit sequence, sent with a *DDT or
*DMC command, is syntactically invalid (see IEEE 488.2, 10.7.6.3).

SCPI Execution Errors

Error Number Description

-200 Execution error. This is the generic syntax error for devices that cannot detect more specific errors.
This code indicates only that an Execution Error as defined in IEEE 488.2, 11.5.1.1.5 has occurred.

-220 Parameter error. Indicates that a program data element related error occurred. This error message is
used when the device cannot detect the more specific errors described for errors -221 through -229.

-221 Settings conflict. Indicates that a legal program data element was parsed but could not be executed
due to the current device state (see IEEE 488.2, 6.4.5.3 and 11.5.1.1.5.)

-222 Data out of range. Indicates that a legal program data element was parsed but could not be executed
because the interpreted value was outside the legal range as defined by the device (see IEEE 488.2,
11.5.1.1.5.)

-223 Too much data. Indicates that a legal program data element of block, expression, or string type was
received that contained more data than the device could handle due to memory or related device-
specific requirements.

-224 Illegal parameter value. Used where exact value, from a list of possibles, was expected.

-240 Hardware error. Indicates that a legal program command or query could not be executed because of a
hardware problem in the device. Definition of what constitutes a hardware problem is completely
device-specific. This error message is used when the device cannot detect the more specific errors
described for errors -241 through -249.

-241 Hardware missing. Indicates that a legal program command or query could not be executed because of
missing device hardware; for example, an option was not installed. Definition of what constitutes
missing hardware is completely device-specific.

-250 Mass storage error. Indicates that a mass storage error occurred. This error message is used when
the device cannot detect the more specific errors described for errors -251 through -259.

-251 Missing mass storage. Indicates that a legal program command or query could not be executed
because of missing mass storage; for example, an option that was not installed. Definition of what
constitutes missing mass storage is device-specific.

-252 Missing media. Indicates that a legal program command or query could not be executed because of a
missing media; for example, no disk. The definition of what constitutes missing media is device-
specific.

-253 Corrupt media. Indicates that a legal program command or query could not be executed because of
corrupt media; for example, bad disk or wrong format. The definition of what constitutes corrupt
media is device-specific.

SCPI Command Errors

Error Number Description

272

SCPI Command Reference
Errors

-254 Media full. Indicates that a legal program command or query could not be executed because the media
was full; for example, there is no room on the disk. The definition of what constitutes a full media is
device-specific.

-258 Media protected. Indicates that a legal program command or query could not be executed because the
media was protected; for example, the write-protect tab on a disk was present. The definition of what
constitutes protected media is device-specific.

-272 Macro execution error. Indicates that a syntactically legal macro program data sequence could not be
executed due to some error in the macro definition (see IEEE 488.2, 10.7.6.3.)

-273 Illegal macro label. Indicates that the macro label defined in the *DMC command was a legal string
syntax, but could not be accepted by the device (see IEEE 488.2, 10.7.3 and 10.7.6.2); for example, the
label was too long, the same as a common command header, or contained invalid header syntax.

-276 Macro recursion error. Indicates that a syntactically legal macro program data sequence could not be
executed because the device found it to be recursive (see IEEE 488.2, 10.7.6.6).

-277 Macro redefinition not allowed. Indicates that a syntactically legal macro label in the *DMC command
could not be executed because the macro label was already defined (see IEEE 488.2, 10.7.6.4).

-278 Macro header not found. Indicates that a syntactically legal macro label in the *GMC? query could not
be executed because the header was not previously defined.

SCPI Device-Specific Errors

Error Number Description

-310 System error. Indicates that some error termed “system error” by the device, has occurred. This code
is device-dependent.

-311 Memory error. Indicates that an error was detected in the device’s memory. The scope of this error is
device-dependent.

-315 Configuration memory lost. Indicates that nonvolatile configuration data saved by the device has been
lost. The meaning of this error is device-specific.

-321 Out of memory.

-330 Self-test failed.

-350 Queue overflow. A specific code entered into the queue in lieu of the code that caused the error. This
code indicates that there is no room in the queue and an error occurred but was not recorded.

SCPI Execution Errors

Error Number Description

273

SCPI Command Reference
Errors

SCPI Query Errors

Error Number Description

-400 Query error. This is the generic query error for devices that cannot detect more specific errors. This
code indicates only that a Query Error as defined in IEEE 488.2, 11.5.1.1.7 and 6.3 has occurred.

-410 Query INTERRUPTED. Indicates that a condition causing an INTERRUPTED Query error occurred (see
IEE 448.2, 6.3.2.3); for example, a query followed by DAB or GET before a response was completely
sent.

-420 Query UNTERMINATED. Indicates that a condition causing an UNTERMINATED Query error occurred
(see IEEE 488.2, 6.3.2.2); for example, the device was addressed to talk and an incomplete program
message was received.

-430 Query DEADLOCKED. Indicates that a condition causing an DEADLOCKED Query error occurred (see
IEEE 488.2, 6.3.1.7); for example, both input buffer and output buffer are full and the device cannot
continue.

-440 Query UNTERMINATED after indefinite response. Indicates that a query was received in the same
program message after an query requesting an indefinite response was executed (see IEEE 488.2,
6.5.7.5).

Agilent N2216A-Specific Errors

Error Number Description

6201 Device not open. A read, write or other command was used to access a device that was not already
open. See MMEM:SCSI:OPEN.

6202 Device not ready. A command was used to access a device that had been opened with the
dontStartUnit bit set. Try closing the device and re-opening it without that bit set in the mode word.

6203 Device already open. A second open was attempted on a device that was already open.

6204 Device incompatible. This error is returned if a MMEM:TUN:OPEN is sent with two devices on the
same SCSI bus, or with the devices swapped (specifying the SCSI B device first and then the SCSI A
device). This error is returned from MMEM:SESS:ADD if a two device Transfer Unit is added to a
Session that already contains one device Transfer Units or vice versa; or if a single device Transfer Unit
on SCSI A is added to a Session containing single device Transfer Units on SCSI B or vice versa. Also,
there are a few commands that will only execute on a certain type of device, MMEM:SCSI:ERAS will
only execute on optical memory devices.

6205 Device error. A device returned an error after attempting to perform some operation for which there is
no further information.

6206 Session full. A MMEM:SESS:ADD was attempted on a Session that already contained the maximum
number of Transfer Units.

6207 Session busy. A SCPI command attempted to use a Session that was already performing some SCSI
operation. Use of the Session Busy bit in the Operation Status register may help avoid this error.

6208 Session empty. A SCPI command attempted to use a Session that did not contain any Transfer Units.

6209 Sequence full. A SEQ:ADD was attempted on a Sequence that already contained the maximum
number of Sequence operations.

6210 Sequence busy. A SEQ:BEG command was attempted when a Sequence was already running.

274

SCPI Command Reference
Errors

6211 Sequence empty. A SEQ:BEG command was attempted on a Sequence containing no Sequence
operations.

6212 Local bus busy. The local bus chip was not in the paused state when a SEQ:BEG was attempted.

6213 Require even block count. A SCPI command with an odd number of SCSI blocks attempted an opertion
on a Session containing split Transfer Units. Only even block counts are accepted on split Sessions.

6214 Device timeout. A SCSI device timed out when a SCSI command was sent to it.

6215 Sequence bus error. The sequencer detected a bus error while running a Sequence. This could be due
to a VXI device not existing at the expected logical address or due to memory not existing at an
expected location. Check the operations in the Sequence for errors.

6216 (This error is only applicable to the HP 1562A/B/C. Maximum safe disk temperature exceeded. This
error indicates that the disk drive has exceeded 72 degrees C. It has been spun down if it was
spinning. The temperature check is done every 30 minutes after powerup. This check can only be
done for HP disks due to the use of non-SCSI-defined commands. The SCSI controller and bus address
will be included in the error message. For example, the results of SYST:ERR? might return:
16, "Maximum safe disk temperature exceeded; SCSI B, bus address 0"

6217 Write to a read-only device. Either the device was opened with the read-only bit in the open mode set,
or the device is write-protected (i.e. a tape in the DAT is write protected) and a write operation was
attempted to this device.

Agilent N2216A-Specific Errors

Error Number Description

LIF Library Reference

276

LIF Library Reference

Getting Started

Why Use the LIF Library?

LIF (Logical Interchange Format) is a directory and file format used to exchange files
among various computer systems and instruments. Any Agilent N2216A Session,
including one or more disks, may be formatted as a LIF volume.

LIF library functions provide a higher level of access to Agilent N2216A data. For
example, you can set up Sessions by using LIF library functions as an alternative to using
MMEM:SCSI:OPEN, MMEM:TUN:OPEN, and MMEM:SESS:ADD. Data can then be
transferred using either LIF functions, Sequences, or SCPI commands.

An advantage of using the LIF library to access an Agilent N2216A Session as a LIF
volume is that multiple data acquisitions may easily be stored with each group of data
identified by its own name and size in a directory. Furthermore, a single disk volume may
be directly accessed by a host computer when connected via a SCSI cable.

Special Considerations for the LIF Library

The implementation of the LIF library for the Agilent N2216A involves some special
constraints and conventions:

• The number of open volumes is limited to the number of available Sessions on the
Agilent N2216A. A volume describes a single file-system which may exist on a single
device or may cross several devices as do Sessions on the Agilent N2216A. Many files
may be accessed simultaneously on one volume.

• The LIF library assumes that every SCSI block in a Session is the same size. This
implies that for Sessions involving striping each Transfer Unit must have the same
SCSI block size. This is only an issue for striped Sessions since both devices within a
Transfer Unit must already be the same size due to restrictions imposed by the Agilent
N2216A. The additional restriction imposed by the LIF libraries requires that all
Transfer Units within a Session also have the same SCSI block size.

• This library assumes that every volume starts at the beginning of all devices which
make up the volume. For example, if a Session is built from individual devices, the
MMEM:TUN:OPEN command will always be sent with the starting SCSI block
parameter set to 0.

• The LIF library can read and write only BDAT files. Files of other types may be
written to volumes but they cannot be accessed by the LIF library.

• Each BDAT file on a volume begins with a 256-byte block of additional header
information including, most importantly, file size. The library protects this header
from reads and writes and designates that seeks to the beginning of the file go to the
block following this BDAT header information.

• All LIF functions set ‘e1562_errno.’ Error codes are listed at the end of this chapter.

277

LIF Library Reference

Naming Conventions

Several functions expect that a name be passed as a parameter. In some cases, the name
refers to a single file (i.e., e1562_fopen), and in other cases the name refers to a volume
only (i.e., e1562_pack).

Volume names and file names use a special naming convention to indicate which SCSI
device is being referenced, and also provides for a single file system consisting of many
SCSI devices. The special conventions include:

• A device pair always starts with a capital ‘V’ followed by the A SCSI bus disk address
then the B SCSI bus disk address.

• Addresses are designated by lower case hexadecimal numbers.

• Unused devices are designated by the placeholder ‘x’.

• File size designations (when required) are decimal ASCII.

• File names are made up of the volume name followed by a colon followed by a base
LIF file name.

• A volume consisting of a striped Session has a name that includes several of the disk
pairs described above, each followed by a burst block count. This is analogous to the
<Count> parameter used in MMEM:SESS:ADD.

Volume name examples:

A single device at address 3 on controller B:
 "Vx3" (SCSI A is absent; SCSI B at address 3)

A split pair of devices with the controller/address pairs of A/5 and B/11:
 "V5b" (SCSI A at address 5; SCSI B at address 11)

A split and striped disk set using a pair of disks at A/1 and B/7, and a second pair at A/14
and B/12 with a burst block count of 512:
 "V17512Vec512" (First pair: SCSI A at address 1; SCSI B at address 7;
 Second pair: SCSI A at address 14; SCSI B at address 12)

File name example:

A file named "file1" on a volume with data split between a pair of devices:
 "Vaf:file1"

278

LIF Library Reference

LIF Library Quick Reference

Function Description Page

Library Management

e1562_closeLibrary Release all dynamic data structures 284

e1562_initializeLibrary Initialize the internal data structures 296

e1562_mapModule Associate a module with an id 297

Volume Management

e1562_available Return the number of LIF blocks available on the volume 281

e1562_copy Copy a file or volume 283

e1562_defaultVolume Define the default volume 285

e1562_dirFirst Return information from the first valid directory entry on a volume 286

e1562_dirInit Replace information on a volume with an empty LIF file system 287

e1562_dirNext Return information from a subsequent valid directory entry on a
volume

288

e1562_pack Reorganize the file system to delete empty space 298

e1562_remove Delete the specified file from the LIF directory 299

e1562_rename Change the name of a file 300

File Management

e1562_allocated Return the number of 256-byte blocks allocated to the file 280

e1562_block Return the current Agilent N2216A Session block number 282

e1562_fclose Flush the stream and close the associated file 289

e1562_fflush Cause any unwritten data for a stream to be written to its associated
file

290

e1562_fgetpos Store the current file position indicator for the stream 291

e1562_fopen Open the file specified by the string name 292

e1562_fread Read data from a file into an array 293

e1562_fsetpos Sets the file position indicator for the stream 294

e1562_fwrite Write data to a file from an array 295

e1562_setEOF Set the end-of-file marker for the file 301

279

LIF Library Reference

LIF Commands Available from the Command Line

Command Description Page

e1562ls List contents of current volume 305

e1562mv Rename a file 306

e1562cp Copy a file 303

e1562in Initialize a volume 304

e1562pk Pack a volume 307

e1562rm Remove a file 308

280

LIF Library Reference
Agilent N2216A LIF Functions

Agilent N2216A LIF Functions

e1562_allocated

Returns the physical file length.

Synopsis: #include "e1562lif.h"

unsigned long e1562_allocated(e1562_FILE *stream);

Description: This function returns the number of 256-byte blocks allocated to the file. This may be
different from the number of blocks actually occupied by data. This number is the
physical length of the file, whereas the logical length of the file is the amount of data
contained in the file.

Notes: To determine how much data is in the file, use e1562_fsetpos to go to the end of the
file, then call e1562_fgetpos to determine the offset from the beginning of the file in
bytes.

Example: e1562_FILE *fp;
unsigned long LIF blocks;

fp = e1562_fopen(2,"Vx0:jan20temp","r");
LIF blocks = e1562_allocated(fp);

Return Value: Number of 256-byte blocks allocated to the file.

See Also: e1562_fopen on page 292

281

LIF Library Reference
Agilent N2216A LIF Functions

e1562_available

Returns available space and available contiguous space on a volume.

Synopsis: #include "e1562lif.h"

e1562_errors e1562_available(e1562ID id, const char *volname,
unsigned long *totalBlocks,
unsigned long *largestBlock);

Description: This function returns the number of LIF blocks (256 bytes) available on the entire volume
as well as the largest sequential number of blocks available. The value returned in
‘largestBlock’ is the size of the longest file which can be created on this volume. It is
possible that a larger file might be created after calling e1562_pack.

Example: e1562_errors error;
unsigned long Total, Large;

error = e1562_mapModule(1,"Vx1", 48);
error = e1562_available(1,"V24512Vc3512", &Total, &Large);

Return Value: This function returns zero if successful and an error number if it fails.

See Also: e1562_pack on page 298
e1562_mapModule on page 297

282

LIF Library Reference
Agilent N2216A LIF Functions

e1562_block

Returns the next volume block number to be used.

Synopsis: #include "e1562lif.h"

unsigned long e1562_block(e1562_FILE *stream,
 unsigned long *blockSize,
 unsigned long *byteOffset);

Description: This function returns the physical location on an Agilent N2216A volume to or from which
the next character would be transferred on a one byte read or write. The ‘blockSize’
argument will reflect the number of bytes in the volume’s block. For a split volume the
‘blockSize’ will be twice the size of a volume consisting of a single device.

The value pointed to by the ‘byteOffset’ argument will be set to the byte offset into the
returned block number at which the next byte would be read or written on the current
volume. The block returned is a SCSI block offset from the beginning of the Agilent
N2216A Session associated with the LIF volume on which the file resides.

Notes: The file must be opened with e1562_fopen before this function can be executed.

Example: e1562_FILE *file;
unsigned long block, bytes;

file = e1562_fopen(0,"V0x:pressure", "r");
block = e1562_block(file, &bytes);

Return Value: If an error is detected, 0xffffffff will be returned, otherwise the Session block number is
returned.

See Also: e1562_fopen on page 292

283

LIF Library Reference
Agilent N2216A LIF Functions

e1562_copy

Copy a file or volume.

Synopsis: #include "e1562lif.h"

e1562_errors e1562_copy(e1562ID id, const char *filename,
 const char *newfile);

Description: The file ‘filename’ is duplicated as ‘newfile’. This function copies a file or an entire
volume.

If ‘filename’ is a file, ‘newfile’ may be either a filename or a volume name. If ‘filename’ is a
volume name (must include the ‘:’) then ‘newfile’ must be a volume name.

If ‘filename’ and ‘newfile’ are on different volumes, this function requires that two Agilent
N2216A Sessions be available for use.

Notes: If ‘newfile’ already exists, an error is returned.

It is not possible to copy from one Agilent N2216A to another with this function.

Example: Copy a file to another file:
error = e1562_copy(1,"V1x:pump3", "V1x:pump3_bak");

Copy a file to a volume:
error = e1562_copy(0,"V55:frf4_5","V1x");

Copy a volume to a volume:
error = e1562_copy(3,"Vab:","Vxc:");

Return Value: This function returns zero if successful and an error number if it fails.

See Also: e1562_mapModule on page 297

284

LIF Library Reference
Agilent N2216A LIF Functions

e1562_closeLibrary

Closes all volumes and files and deallocates all dynamic memory.

Synopsis: #include "e1562lif.h"

e1562_errors e1562_closeLibrary(void);

Description: This function cleans up all data structures in preparation for program termination.

Example: e1562_closeLibrary();

285

LIF Library Reference
Agilent N2216A LIF Functions

e1562_defaultVolume

Define the default volume.

Synopsis: #include "e1562lif.h"

e1562_errors e1562_defaultVolume(e1562ID id, const char *volname);

Description: This function defines ‘volname’ as the default volume. If ‘volname’ does not specify a
valid volume, an error will be returned. The default volume is initially null upon startup.
Calling this function successfully allows the programmer to reference names on that
volume without being required to specify the volume name as part of the filename. Any
file specified without a volume name will be assumed to reside on the default volume. It
is still possible to place a volume name in the filename to reference a specific volume
which may not be the default volume.

Example: e1562_errors err;
err = e1562_defaultVolume(1, "V05512V12512");

Return Value: This function returns zero if successful and an error code if it fails.

See Also: e1562_mapModule on page 297

286

LIF Library Reference
Agilent N2216A LIF Functions

e1562_dirFirst

Returns information from the first valid directory entry.

Synopsis: #include "e1562lif.h"

e1562_dirEntry *e1562_dirFirst(e1562ID id, const char *volname,
 e1562_dirEntry *buffer);

Description: This function returns information from the first valid directory entry on volume ‘volname.’
The received pointer to ‘e1562_dirEntry’ must point to an actual e1562_dirEntry structure
(memory is allocated in the calling function). This function, in conjunction with e1562_
dirNext, is used to traverse a LIF directory.

The following fields in the structure returned by this function provide information about a
file in the directory.

Notes: Deleted directory entries, or otherwise invalid directory entries will never be returned
from this function.

Example: e1562_dirEntry entry;
e1562_dirEntry *entryp;

entryp = e1562_dirFirst(2, "V13", &entry);

Return Value: If an error is found or there are no files in the directory the return value will be zero,
otherwise a pointer to that structure will be returned.

See Also: e1562_dirNext on page 288
e1562_mapModule on page 297

Type Definition

unsigned char name [12] name of file

unsigned long date stamp create date in BCD - YYMMDD

unsigned long time stamp create time in BCD - HHMMSS

signed long type type of file

unsigned long LIFstart first 256-byte block of file

unsigned long LIFallocated number of 256-byte blocks allocated

unsigned long sizeHigh MS half of the byte count

unsigned long sizeLow LS half of the byte count

unsigned long volume volume number, MSB=1 is last volume

unsigned long reserved not used

unsigned long entryNumber index into directory

unsigned long session session number

e1562 id which Agilent N2216A

void * vid volume id

287

LIF Library Reference
Agilent N2216A LIF Functions

e1562_dirInit

Replace information on a volume with an empty LIF file system.

Synopsis: #include "e1562lif.h"

e1562_errors e1562_dirInit(e1562ID id, const char *volname);

Description: This function replaces all information on the designated volume with an empty LIF file
system.

Note Any information previously existing on the volume will be lost

Example: e1562_errors err;
err = e1562_dirInit(1, "Vxe");

Return Value: This function returns zero if successful and an error number if it fails.

See Also: e1562_mapModule on page 297

288

LIF Library Reference
Agilent N2216A LIF Functions

e1562_dirNext

Retrieve the next entry from a LIF directory.

Synopsis: #include "e1562lif.h"

e1562_dirEntry *e1562_dirNext(e1562_dirEntry *previous);

Description: Assuming the received pointer to ‘e1562_dirEntry’ already contains valid directory
information from a volume, this function replaces the structure with information about
the next valid file in the directory.

The same structure type definitions apply to this function as listed in the description of
the function e1562_dirFirst.

It is important that the contents of the structure returned by a previous call to e1562_
dirFirst or e1562_dirNext NOT be modified before calling this function.

Notes: Deleted directory entries, or otherwise invalid directory entries will never be returned
from this function.

Example: e1562_dirEntry entry;
e1562_dirEntry *entryp;

entryp = e1562_dirFirst(2, "V13", &entry);
entryp = e1562_dirNext(entryp);

Return Value: If there are no more files in the directory zero will be returned, otherwise the received
pointer is returned.

See Also: e1562_dirFirst on page 286

289

LIF Library Reference
Agilent N2216A LIF Functions

e1562_fclose

Flush the stream and close the associated file.

Synopsis: #include "e1562lif.h"

int e1562_fclose(e1562_FILE *stream);

Description: Any unwritten data is written to the file; any unread data is discarded. Any buffers are
deallocated.

Notes: The file must be opened with e1562_fopen before this function can be executed.

Example: e1562_FILE *f;

f = e1562_fopen (3, "Vx0:trace5,1048576", "w");
if (e1562_fclose(f) ! = 0)
 fprintf(stderr "Close failed\n");

Return Value: This function returns 0 if successful; returns -1 if any errors were detected

See Also: e1562_fopen on page 292

290

LIF Library Reference
Agilent N2216A LIF Functions

e1562_fflush

Causes any unwritten data for the stream to be written to its associated file.

Synopsis: #include "e1562lif.h"

int e1562_fflush(e1562_FILE *stream);

Notes: The file must be opened with e1562_fopen before this function can be executed.

Example: e1562_FILE *fp

fp = e1562_fopen (2, "V5x:rotor", "r+");
 .
 .

 read/write data

 .
 .
e1562_fflush(fp);

Return Value: This function returns 0 if successful and -1 if a write error occurs.

See Also: e1562_fopen on page 292

291

LIF Library Reference
Agilent N2216A LIF Functions

e1562_fgetpos

Stores the current value of the file position indicator.

Synopsis: #include "e1562lif.h"

e1562_errors e1562_fgetpos(e1562_FILE *stream,
 e1562_fpos_t *byteOffset);

Description: This function stores the current value of the file position indicator for the stream into the
object pointed to by ‘byteOffset.’ The value stored contains information usable by the
e1562_fsetpos function for repositioning the stream.

Notes: The file must be opened with e1562_fopen before this function can be executed.

This function differs from the ANSI C fgetpos in two ways:

• The returned information is defined to be the byte offset from the beginning of the file
at which the file position indicator is currently located.

• Upon failure the value of errno is NOT modified.

Example: e1562_FILE *data;
e1562_fpos_t position;

data = e1562_fopen(0, "Vbc:spl_5", "w+");
e1562_fgetpos(data, &position);

Return Value: This function returns 0 if successful and an error number if it fails.

See Also: e1562_fsetpos on page 294
e1562_fopen on page 292

292

LIF Library Reference
Agilent N2216A LIF Functions

e1562_fopen

Open the file specified by the string name and designate the file size.

Synopsis: #include "e1562lif.h"

e1562_FILE *e1562_fopen(e1562ID id, const char *name,
 const char *mode);

Description: The filename may include the volume name as a prefix to the file name separated by a
colon, or may rely on the default volume (see e1562_defaultVolume on page 285). The
argument ‘mode’ points to a string with one of the following options:

Opening a file with ‘r’ as the first character in mode fails if the file does not exist or cannot
be read. Opening a file with ‘a’ as the first character causes all writes to be forced to the
end-of-file, regardless of any intervening calls to the e1562_fsetpos function. When a
file is opened for update (‘+’ contained in the mode string), both input and output may be
performed on the file. However output may not be directly followed by input unless
either the function e1562_fsetpos or e1562_fflush is called, and input may not be
directly followed by output unless the input encountered the end-of-file or e1562_
fsetpos is called.

Notes: This is the only LIF library function which may include file size in the file name.

A filename may include up to 54 characters: a prefix of up to 28 characters for the volume
specifier, a 10 character name conforming to the LIF restriction, a suffix of up to 13
characters to specify the file length, and 3 additional characters to accommodate a colon,
a comma and the null terminator.

Up to 10 files may be open simultaneously.

Example: e1562_FILE *f;

Open file for reading only:

 f = e1562_fopen(1, "Vfx:piston2", "r");

Create file for writing:

 f = e1562_fopen(2, "Vac:chan7,1048576", "w");

Open file for reading and writing:

 f = e1562_fopen(0, "Vx2:station4", "r+");

Return Value: If successful this function returns a pointer to the object controlling the stream, and
returns a null pointer if errors are detected.

See Also: e1562_defaultVolume on page 285
e1562_mapModule on page 297

r Open file for reading.

w Truncate to zero length or create file for writing.

a Append; open or create file for writing at end-of-file.

r+ Open file for update (reading and writing).

w+ Truncate to zero length or create file for update.

a+ Append; open or create file for update; writing at end-of-file.

293

LIF Library Reference
Agilent N2216A LIF Functions

e1562_fread

Reads data from the file associated with the stream into an array.

Synopsis: #include "e1562lif.h"

size_t e1562_fread(void *buff, size_t bufelSize, size_t count,
 e1562_FILE *stream);

Description: Data of a size up to ‘count’ elements is read from the file associated with the stream into
the array pointed to by ‘buff’, whose size is specified by ‘bufelSize’. The file position
indicator for the steam is advanced by the number of bytes successfully read.

Notes: If an error occurs, the resulting value of the file position indicator is indeterminate. If a
partial element is read, its value is indeterminate.

The file must be opened with e1562_fopen before this function can be executed.

Example: unsigned char data[8192]
e1562_FILE *file;
size_t count;

file = e1562_fopen("V3x:vib", "r");
count = e1562_fread(data, sizeof(data[0]), 8192, file);

Return Value: This function returns the number of elements successfully read, which may be less than
‘count’ if a read error or end-of-file is encountered. If ‘count’ or ‘bufelSize’ is zero, the
function returns zero and the contents of ‘buff’ and the state of the stream remain
unchanged.

See Also: e1562_fopen on page 292

294

LIF Library Reference
Agilent N2216A LIF Functions

e1562_fsetpos

Sets the file position indicator.

Synopsis: #include "e1562lif.h"

e1562_errors e1562_fsetpos(e1562_FILE *stream,
 N const e1562_fpos_t *byteOffset);

Description: This function sets the file position indicator for the stream to the value of the object
pointed to by ‘byteOffset.’ A successful call to e1562_fsetpos clears the end-of-file
indicator for the stream. The next operation on an update stream may be either input or
output.

Notes: The file must be opened with e1562_fopen before this function can be executed.

If you attempt to set the file position beyond the end of file, an error will be returned, but
the file position will be set to the end of file.

This function differs from the ANSI C fsetpos in two ways:

The data received in the object pointed to by ‘byteOffset’ need not have been obtained
from a call to e1562_fgetpos but may be set by the caller as a byte offset from the
beginning of the file.

Upon failure the value of errno is NOT modified.

Example: e1562_FILE *fp;
e1562_fpos_t offset;

offset.positionHigh = 0;
offset.positionLow = 4096;

fp = e1562_fopen("V6x:temp", "r");
e1562_fsetpos(fp, &offset);

Return Value: This function returns 0 if successful and an error number if it fails.

See Also: e1562_fgetpos on page 291
e1562_fopen on page 292

295

LIF Library Reference
Agilent N2216A LIF Functions

e1562_fwrite

Writes data from an array into the file associated with the stream.

Synopsis: #include "e1562lif.h"

size_t e1562_fwrite(const void *buff, size_t bufelSize,
 size_t count, e1562_FILE *stream);

Description: Data of a size up to ‘count’ elements is written to the file associated with the stream from
the array pointed to by ‘buff’, whose size is specified by ‘bufelSize.’ The file position
indicator for the steam is advanced by the number of bytes successfully written.

Notes: If an error occurs the resulting value of the file position indicator is indeterminate.

The file must be opened with e1562_fopen before this function can be executed.

Example: #define DATA_SIZE 65536
e1562_FILE *file;
long data[DATA_SIZE];
size_t count;

file = e1562_fopen("Vxd:data", "w");
count = e1562_fwrite(data, sizeof(data[0]), DATA_SIZE, file);
if (count < DATA_SIZE)
 fprintf(stderr, "Error writing data: %ld\n", e1562_errno);

Return Value: This function returns the number of elements successfully written, which will be less than
count only if a write error is encountered.

See Also: e1562_fopen on page 292

296

LIF Library Reference
Agilent N2216A LIF Functions

e1562_initializeLibrary

Initializes internal data structures which are referenced by the other functions in the
Agilent N2216A LIF library.

Synopsis: #include "e1562lif.h"

e1562_errors e1562_initializeLibrary(void);

Description: This function allocates memory and initializes data structures in preparation for calling
other functions in the LIF library.

Notes: This function MUST be called before using other functions in the LIF library.

Example: e1562_initializeLibrary();

297

LIF Library Reference
Agilent N2216A LIF Functions

e1562_mapModule

Associates an Agilent N2216A module with the given id.

Synopsis: #include "e1562lif.h"

e1562_errors e1562_mapModule(e1562ID id, const char *interface,
 unsigned char logicalAddr);

Description: Four modules may be open at a time; the valid range for ‘id’ is 0-3. The argument
‘interface’ is a string appropriate to be passed to the SICL iopen function. If ‘id’ already
refers to a valid Agilent N2216A, the module will no longer be accessible from the
previous id upon successful completion of this function.

Notes: This function MUST be called before using id as an argument to another function since
initially all ‘id’ are null.

Example: e1562_mapModule(0, "vxi", 32);

Return Value: If ‘logical address’ does not refer to an Agilent N2216A, an error will be returned.

298

LIF Library Reference
Agilent N2216A LIF Functions

e1562_pack

Removes empty space left by deleted files.

Synopsis: #include "e1562lif.h"

e1562_errors e1562_pack(e1562ID id, const char *volname);

Description: This function reorganizes the file system specified by ‘volname’ such that there is no
empty space caused by deleted files.

Unlike other file systems, data in a LIF file system is all sequential. This means that as
files are created and deleted the largest available contiguous file space becomes smaller
due to fragmentation. This function makes all the files contiguous at the beginning of the
file system, possibly allowing a larger file to be created at the end of the file system.

Notes: Once this operation begins it must not be interrupted until it has completed or the file
system will be corrupted.

Example: e1562_pack(2, "V05256V12256");

Return Value: This function returns zero if successful and an error number if it fails.

See Also: e1562_mapModule on page 297

299

LIF Library Reference
Agilent N2216A LIF Functions

e1562_remove

Delete the specified file from the LIF directory.

Synopsis: #include "e1562lif.h"

e1562_errors e1562_remove(e1562ID id, const char *filename);

Description: The space used by the file ‘filename’ is released to the file system for use by other files.

Example: e1562_remove(0, "Vx9:myfile");

Return Value: This function returns 0 if successful. If the file is not found or the file is open an error is
returned and the file is not removed.

See Also: e1562_mapModule on page 297

300

LIF Library Reference
Agilent N2216A LIF Functions

e1562_rename

Change the name of a file.

Synopsis: #include "e1562lif.h"

e1562_errors e1562_rename(e1562ID id, const char *oldname,
 const char *newname);

Description: This function changes the name of a file from ‘oldname’ to ‘newname.’ ‘Newname’ need
not contain the volume in its name.

The following conditions generate an error:

• ‘oldname’ does not exist on either the default volume or on the volume specified in the
name

• the volume name for ‘newname’ (if used) does not match the volume on which
‘oldname’ resides

• ‘newname’ is the same as a current file in the directory

• the file ‘oldname’ is open

Example: e1562_rename(3, "Vex:myfile", "yourfile");

Return Value: If successful this function returns a 0 and ‘oldname’ no longer refers to an existing file,
otherwise an error is generated and the original filename is not changed.

See Also: e1562_defaultVolume on page 285
e1562_mapModule on page 297

301

LIF Library Reference
Agilent N2216A LIF Functions

e1562_setEOF

Sets the end-of-file marker for the file.

Synopsis: #include "e1562lif.h"

e1562_errors e1562EOF(e1562_FILE *stream,
 const e1562_fpos_t *byteOffset);

Description: This function is useful in establishing a logical end of file when the data is written to the
file by some method other than the LIF file system (such as by using Agilent N2216A
sequences).

Notes: The EOF cannot be set beyond the size of the file specified when it was created.

Example: e1562_FILE *f;
e1562_fpos_t offset;

f = e1562_fopen("Vax:auto_jun14", "w");
offset.positionHigh = 0;
offset.positionLow = 8388608;
e1562_setEOF(f, &offset);

Return Value: This function returns zero if successful and an error code if it fails.

See Also: e1562_fopen on page 292

302

LIF Library Reference
Agilent N2216A LIF Commands

Agilent N2216A LIF Commands

The following six commands allow you to perform certain actions on volumes directly
from the command line, without having to write and compile a C program.

The same volume and file name conventions apply as for the previous functions. See
Naming Conventions on page 277.

303

LIF Library Reference
Agilent N2216A LIF Commands

e1562cp

Copy files.

Synopsis: e1562cp [-Lisuv] file 1 [file2 ...] target

Description: Copy file1 to target. If target specifies either a LIF volume or is "." (for the current
directory on the host), file1 is copied to that directory, otherwise a file with the name
target is created with the contents of file1. If more than one file is specified, target
must be a volume name or ".". e1562cp may be used to copy files from the Agilent N2216A
to the host, from the host to the Agilent N2216A, or from the Agilent N2216A to the Agilent
N2216A (either the same volume or a different volume).

Each file and/or target must be prefixed with a LIF volume specifier to indicate files on
the Agilent N2216A. A target consisting of only a volume name must include the ":" at the
end of the name.

Example: Copy a file from the host to an Agilent N2216A volume:

e1562cp jan20note Vx0:jan20note

or

e1562cp jan20note Vx0:

Copy several files from an Agilent N2216A to the host:

e1562cp -L96 -s524288 V24:engNotes V24:engVib V24:engTemp .

Copy a file between Agilent N2216A volumes:

e1562cp Vx0:SPLmar12 Vx4:SPLmax

Option Description

-L Specifies the logical address of the Agilent N2216A. Default address is 144.

-i Specifies the interface which connects to the VXI cardcage containing the Agilent N2216A. The default is "vxi".

-s Specifies the size of the block used to copy files between the host and the Agilent N2216A. The default is 8192.

-u Specifies that usage information should be printed then exit.

-v Specifies that the verbose mode should be enabled.

304

LIF Library Reference
Agilent N2216A LIF Commands

e1562in

Create a LIF file system on the specified volume.

Synopsis: e1562in [-Liuv] volume

Description: Initializes a LIF file system on the specified volume.

Caution This will destroy the contents of the disk.

Example: e1562in V00

Option Description

-L Specifies the logical address of the Agilent N2216A. Default address is 144.

-i Specifies the interface which connects to the VXI cardcage containing the Agilent N2216A. The default is "vxi".

-u Specifies that usage information should be printed then exit.

-v Specifies that the verbose mode should be enabled.

305

LIF Library Reference
Agilent N2216A LIF Commands

e1562ls

List contents of a LIF volume.

Synopsis: e1562ls [-Liluv] volume

Description: This command lists the files on the specified LIF volume to STDOUT. One file per line is
printed to STDOUT. The volume name must not contain the ":" which normally separates
a file name from the volume name.

Example: e1562ls V00

Option Description

-L Specifies the logical address of the Agilent N2216A. Default address is 144.

-i Specifies the interface which connects to the VXI cardcage containing the Agilent N2216A. The default is "vxi".

-l Specifies the long format of directory listing. The default is to list just the names of the files.

-u Specifies that usage information should be printed then exit.

-v Specifies that the verbose mode should be enabled.

306

LIF Library Reference
Agilent N2216A LIF Commands

e1562mv

Rename a file on a LIF volume.

Synopsis: e1562mv [-LVivu] file newname

Description: This command renames an existing file. file must exist, and the newname must not. If
newname contains a volume name prefix, it must be the same as that of file.

Example: e1562mv Va4:spl43 spl43.old

Option Description

-L Specifies the logical address of the Agilent N2216A. Default address is 144.

-V Specifies a default volume so that several files may be specified without including the volume in each one.

-i Specifies the interface which connects to the VXI cardcage containing the Agilent N2216A. The default is "vxi".

-u Specifies that usage information should be printed then exit.

-v Specifies that the verbose mode should be enabled.

307

LIF Library Reference
Agilent N2216A LIF Commands

e1562pk

Coalesce files on a LIF volume.

Synopsis: e1562pk [-Liuv] volume

Description: This command coalesces files on the specified LIF volume, by packing together files in
the directory and on the volume into contiguous space at the beginning of the volume.
This allows a larger file to be created later if there were several deleted files, or if a small
file has been used to fill the spot originally used for a large file.

Caution Once this command starts working it must not be interrupted or the file system will be
corrupted.

Example: e1562pk Vx3

Option Description

-L Specifies the logical address of the Agilent N2216A. Default address is 144.

-i Specifies the interface which connects to the VXI cardcage containing the Agilent N2216A. The default is "vxi".

-u Specifies that usage information should be printed then exit.

-v Specifies that the verbose mode should be enabled.

308

LIF Library Reference
Agilent N2216A LIF Commands

e1562rm

Remove one or more files from a LIF volume or volumes.

Synopsis: e1562rm [-LViuv] file1 [file2 ...]

Description: This command deletes each of the files specified. Usually, each file will be specified with
the volume prefix as ‘volume:file’. If the -V option is used to specify the volume name, all
files which do not contain a volume will use the specified default volume.

Example: Remove a single file:
e1562rm -L32 -ivxi2 Vx2:temp.old

Remove multiple files, most from V8x, one from Vxc:
e1562rm -VV8x abc def ghi Vxc:xyz mno

Option Description

-L Specifies the logical address of the Agilent N2216A. Default address is 144.

-V Specifies a default volume so that several files may be specified without including the volume in each one.

-i Specifies the interface which connects to the VXI cardcage containing the Agilent N2216A. The default is "vxi".

-u Specifies that usage information should be printed then exit.

-v Specifies that the verbose mode should be enabled.

309

LIF Library Reference
LIF Library Errors

LIF Library Errors

Error
Number Name

Description

0 e1562Err_noError No error was generated

1 e1562Err_noSessionAvailable A Session is not available

2 e1562Err_invalidVolumeName The specified volume name is not valid

3 e1562Err_missingVolumeName No volume name was specified

4 e1562Err_VolumeOpen The specified volume is already open

5 e1562Err_interfaceError An error was detected on the interface

6 e1562Err_outOfMemory Memory space is insufficient for the designated function

7 e1562Err_systemError A system error occurred

8 e1562Err_idInvalid The specified id is invalid

9 e1562Err_fileSizeInvalid The specified file size is invalid

10 e1562Err_fileNameInvalid The specified file name is invalid

11 e1562Err_fileModeInvalid The specified file mode is invalid

12 e1562Err_fileDoesNotExist The specified file does not exist

13 e1562Err_fileDoesNotExistNoSize The specified file has no size designation

14 e1562Err_fileExistsWithSize The specified file already has a specified file size; remove size
designation

15 e1562Err_fileEOF The end of the file was encountered before the transfer was
completed

16 e1562Err_fileTypeBad The file type specified is not valid

17 e1562Err_endOfDirectory The end of the directory was encountered before the transfer
was completed

18 e1562Err_volumeNotLIF The specified volume is not of a LIF type

19 e1562Err_renameVolumeDifferent The file to be renamed is specified with two different volume
designations

20 e1562Err_seekPastEOF The read/write location designated is past the end of file marker

21 e1562Err_setEOFpastSize The EOF specified is beyond the created size of the file

22 e1562Err_fileOpen A file which is open has been designated to delete, rename, or
copy

310

LIF Library Reference
LIF Library Errors

Glossary

312

Glossary

A16

16-bit address space. A16 has an upper limit of 65535.

A24

24-bit address space. A24 has an upper limit of 16777215.

A32

32-bit address space. A32 has an upper limit of 4294967295.

ADC

an Analog-to-Digital Converter module used as the input to a VXI system. Examples
include the HP/Agilent E1413C and HP/Agilent E1432A.

address space

a range of addresses in memory. See also A16, A24, A32, and Shared RAM.

bit bucket

a place to put unwanted data.

blocksize (Local Bus)

the amount of data, in bytes, moving in a block on the Local Bus.

blocksize (SCSI)

the size of a block of data on a disk or DAT.

cache

a block of RAM used to allow fast transfers to a slow device.

CVT

Current Value Table.

D16

a single 16-bit transfer over the VXI system bus.

D32

a single 32-bit transfer over the VXI system bus.

differential-wide

a SCSI connector in which the signal is difference between high and low wires. Wide
refers to a 16-bit connection (narrow is 8 bits).

313

Glossary

DMA

Direct Memory Access.

embedded computer

a computer (functioning as controller) which is installed in the VXI mainframe. An
example is the V743.

GPIB

General Purpose Interface Bus.

implied mnemonic

keywords in a SCPI command which can be deleted without changing the effect of the
command. Implied mnemonics are identified by brackets [] in SCPI syntax diagrams.

internal device address

a SCSI or DAT address.

LBUS

see Local Bus.

LIF libraries

Logical Interchange Format, a directory and file format used to exchange files among
various Hewlett-Packard computer systems and instruments. Agilent N2216A Sessions
may be accessed by using LIF functions.

Local Bus

a daisy-chain bus structure connecting the modules in a VXI system.

logical address

the VXI address of a module.

memory space

see address space.

monitoring

A method of transferring data which allows the host computer to access part of the data
during transfer operations. This is done by transferring part of the data to host memory at
the same time as to the Agilent N2216A Session.

MXI

an interface to extend the VXI bus to the memory space of a host computer.

314

Glossary

primary address

one of 3 parts of Agilent N2216A address in a SCPI environment. The primary address,
typically 09, indicates which GPIB port in the system controller is used to communicate
with the Slot 0 Control Module, for example the HP/Agilent E1406A.

SCPI

Standard Commands for Programmable Instruments, a standard instrument command
language.

SCSI

Small Computer System Interface.

secondary address

one of 3 parts of Agilent N2216A address in a SCPI environment. The secondary address
indicates the device-specific address. In this case, the VXI logical address.

select code

one of 3 parts of Agilent N2216A address in a SCPI environment. The select code specifies
the interface. Seven (7) is a typical number for the GPIB interface.

Sequence

specifies the order of operations for a throughput or playback Session.

Session

 provides the ability to combine one or more Transfer Units together into one logical data
repository.

shared memory

see Shared RAM.

Shared RAM

Memory space that is available to be shared with other devices, as a way of passing data.
Shared RAM has an upper limit of 262143. (RAM = Random Access Memory).

single-ended

a SCSI connector in which one wire is ground and the other wire is the signal.

split session

data from one Session split across two SCSI devices.

SRAM

Static RAM.

315

Glossary

SRQ

Service Request.

static+dynamic

a measurement that combines low sample-rate data from static sensors (such as
temperature or pressure) with dynamic data (such as vibration or acoustics).

striping

Sessions using multiple Transfer Units containing data which has N blocks on Transfer
Unit 1, M blocks on Transfer Unit 2, and so on.

system bus

a way of referring to the VXI bus not including the Local Bus.

Transfer Unit

a quantity of data transferred as a unit. A transfer unit can refer to data from either one or
two devices. Also called a TUNIT.

TTLTRG

 eight lines on the VXI backplane which are available to provide synchronization between
devices. The Agilent N2216A uses the TTLTRG lines for simple communication with other
devices.

TUNIT

see Transfer Unit

316

Glossary

A

A16 312
A16 address space 64
A24 312
A24 address space 64
A32 312
A32 address space 64
abort 108
aborting data transfer 263
access LED 53
acquisition 65 , 66
ADC 312
address 314 , 314

SCSI 20
address space 64 , 312
addressing, in SCPI 196
assemblies

N2216A 32
assistance 323

B

backing up data 237
backup 70 , 71 , 72
bit bucket 312
block diagram 50
blocksize 312 , 312
brackets 45
browser 19
bytes 109

C

cables
N2216A 32 , 37
part numbers 37

cache 312
calibration 49
cataloging a directory (LIF) 286 , 288
circuit description 50
close

tputfile 120
closing

files (LIF) 289
SCSI device 230
session 238
transfer unit 245
volumes (LIF) 284
VXIplug&play library 84

cmd 85
query int32 86
query real64 87
query string 88

code, manufacturers’ 33
command reference, SCPI

conventions 201
description 198
finding a command 199
symbols 200
syntax descriptions 201

command structure, SCPI 184 , 276
condition register

described 187
operation status 194
questionable status 192
status byte 191

configuration switch 20
constraints, session 61
copy, split session 72
copying data 237 , 283
copying data (LIF) 303
current value table 67
CVT 67 , 312

D

D16 312
D32 312
DAT diagnostics test 219
data flow 68
data management (LIF) 276
debuglevel 93 , 106
default logical address 20
deleting files (LIF) 299 , 308
description, hardware 48
device, SCSI 58
diagnostics

local bus 217 , 218
main board 215
SCSI board 216
SCSI DAT 219
SCSI devices 220
SCSI disk 221

differential-wide 312
digital recorder, external 68
disk drive

SCSI device 224
disk LED 53
disk striping 61
disk test 30 , 30
DMA 313
dynamic 315

E

E1413C ADC 68

Index

Index

E1430A 10 MHz Input 49
E1432A 16-channel Input 49
E1485C VXI Signal Processor 69 , 70 , 70
embedded computer 313
enable register

described 187
Status Byte 191

^ END
 201

End or Identify (EOI) 201
EOF, setting (LIF) 301
erase blocks, SCSI device 232
erase bypass mode, SCSI device 231
error

message 89
query 90

errors
LIF, listed 309
reading 265
SCPI, listed 269
VXIplug&play 89
VXIplug&play, listed 133

event register
described 187
standard event 193

external access 64
external digital recorder 68

F

failed LED 53
fields, sequence 63
file length (LIF) 280
file position (LIF) 291 , 294
file space (LIF) 281
find

modules 91
finished 110
front panel 53

removing 38

G

get
debuglevel 93
timeout 98

glossary 311
GPIB 313

addressing commands 196

H

help, online 19

I

id, assigning (LIF) 297
implied mnemonic 313
included with N2216A 19
Individual SCSI Devices 58
init 99
initializing libraries (LIF) 296
initializing volumes (LIF) 101 , 287 , 304

inspection 18
installing

N2216A 18 , 20
internal device address 313
Internet Explorer 19

L

LBUS 313
LEDs 53
LIF

files 63
illustration 63
irectories 63
libraries 276
uses with Agilent N2216A 276

LIF libraries 313
line feed character (NL) 201
Local Bus 313
local bus 65 , 66 , 66 , 69

configuring mode 267
logic level 20
reset 267 , 268

local bus diagnostics 217 , 218
localbus

reset 115
logical address 313

description 196
logical address, setting 20
logical block size

SCSI device 224
logical blocks

SCSI device 228 , 229

M

main board diagnostics 215
manufacturers’ code 33
master summary bit (MSS) 189 , 191
MAV bit 191
measurement

Measuring bit 194
memory space 313
memory, shared 64
Message Available bit 191
message, termination 201
MMEMory 58

SCSI 58
SCSIx 58
SESSion 60 , 60 , 61
TUNIT 60

mnemonic 313
model number 46
modes, SCSI device 234
module (N2216A)

installing 20
shipping 25
storing 25
transporting 25

monitoring 66 , 67 , 313
moving files (LIF) 300 , 306
MXI 313

Index

N

Netscape 19
new line character (NL) 201

O

online help 19
open

playback 121
record 122
update 123

opening
SCSI devices 233
transfer unit 246

opening files (LIF) 292
operation register 63
operation status register set

condition register 252
description 194
enable register 253
event register 254
negative transition register 255
positive transition register 256

ordering parts 32
overlapped commands, processing 209 , 214

P

packing data (LIF) 298 , 307
part numbers

cables 37
parts

ordering 32
replaceable 32
table 37

phone assistance 323
playback

open 121
read aint16 111
read aint32 112
read aint32 16 113
read char 114
setup 116
start 118

plug&play library
closing 84
error descriptions 133

polling method 188
post-processing 69 , 69 , 70
pre-processing 70
primary 314
primary address 314
program message terminators 201

Q

query
form 198
of register sets 194

questionable status register set 192
condition register 258
enable register 259
event register 260

negative transition register 261
positive transition register 262

R

RAM, shared 64
read

aint16 124
aint32 125
areal64 126
char 127

reading data
session 293

reading data from files (LIF) 293
record

open 122
setup 117
start 119

recorder, external 68
register

VXI 57
register set

SCPI register set 187
register, operation 63
remove

LED board 44
removing files (LIF) 299 , 308
renaming files (LIF) 300 , 306
replaceable parts 32
request service bit (RQS) 189 , 191
reset 102

device 210
local bus 268
localbus 115

revision
query 103

S

SCPI 314
addressing 196
and sequences 140
format 184 , 276
structure 184 , 276
syntax 184 , 200
version 266

SCPI commands
overview 56 , 58

SCPI register set
how to use 187
master summary (MSS) 189
operation status 194
polling method 188
questionable status 192
request service (RQS) 189
SRQ method 188
standard event 193
status byte 191

SCSI 314
backup 72

SCSI address 20
SCSI board diagnostics 216

Index

SCSI controller addressing 264
SCSI device 58 , 59

calibration 225 , 226 , 227 , 227
closing 230
logical block number 228 , 229
logical block size 224 , 224
opening 233
size 229
specifying mode 234

SCSI devices diagnostics 220
SCSI disk diagnostics 221
SCSI interface test 30
secondary 314
secondary address 314
seek

tputfile 128
select code 314
self test 104 , 213
SEQuence 63
Sequence 314
sequence 61 , 63

adding operations 247
and SCPI 140
and session subsystem 142
defined 140
deleting 249
running 248
session 140
size 250
stopping 149

sequence operations 148
sequences

creating 141
serial number 46
serial poll 189 , 189
service assistance 323
service request

described 188
enable register 189
generating 188
initiating 189
initiating SRQ 189
monitoring conditions 188

Session 314
session 59

adding transfer units 236
closing 238
constraints 61
copying 237
deleting 238
initializing 236 , 276 , 287
overview 60
reading from 168 , 169 , 173
size, in transfer units 242
split 72
writing to 160 , 161 , 162 , 163 , 164 , 165 ,

166 , 167 , 170
set

debuglevel 106
timeout 107

setting parameters
in SCPI 185

setup
playback 116
record 117

SFP (Soft Front Panel) 76
shared memory 64 , 314
Shared RAM 314
shipping module 25
single-ended 314
space character (WSP) 200
special syntactic elements 200
speed, striping 61
split session 72 , 314
splitting data 246
SRAM 314
SRQ 315

described 188
initiating 189

standard event register set 193
start

playback 118
record 119

static sensitive 32
static+dynamic 315
status byte 189 , 191
status LEDs 53
status register, resetting 257
storage space, striping 61
storing module 25
striping 315

disk 61
for speed 61
for storage space 61
illustration 61 , 62

subsystem 60
MMEMory

SCSI 58
TUNIT 60

SEQuence 63
switch, configuration 20
synchronization, TTLTRG 64
syntax

conventions 201
message terminators 201

syntax descriptions 201
CHAR 201
STRING 201

system bus 65 , 66 , 67 , 71 , 315

T

telephone assistance 323
terminating data transfer 263
test

disk 30 , 30
SCSI interface 30

timeout 98 , 107
tput

abort 108
bytes 109

Index

finished 110
playback read aint16 111
playback read aint32 112
playback read aint32 16 113
playback read char 114
reset localbus 115
setup playback 116
setup record 117
start playback 118
start record 119

tputfile
close 120
open playback 121
open record 122
open update 123
read aint16 124
read aint32 125
read areal64 126
read char 127
seek 128
write aint16 129
write aint32 130
write areal64 131
write char 132

Transfer Unit 315
transfer unit 60

adding to session 236
closing 245
opening 246
removing from session 238

transition registers 187
operation status register set 256
questionable status register sets 262

transporting module 25 , 25
trigger

Waiting for TRIG bit 194
troubleshooting

N2216A 29
TTLTRG 64 , 315
TTLTRG lines

clearing 154
setting 151

TUNIT 59 , 60 , 72 , 315

U

update
open 123

utility, sequence 63

V

VME bus 71
VXI

message-based modules 56
registers 57

VXI Installation Consultant 20
VXI system bus 65 , 66 , 67 , 67 , 71
VXIplug&play library

closing 84
error descriptions 133

W

What you get with N2216A 19
write

aint16 129
aint32 130
areal64 131
char 132

writing to a file (LIF) 290 , 295
writing to a Session 295
WSP 200

322

323

Need Assistance?

If you need assistance, contact your nearest Agilent Technologies Service Office.
You can find a list of local service representatives on the Web at:
 http://www.agilent.com/services/English/index.html.

If you do not have access to the internet, one of the centers listed below can direct you to
your nearest representative.

Office or your nearest regional office listed below. If you are contacting Agilent
Technologies about a problem with your Agilent N2216A VXI/SCSI Interface module,
please provide the following information:

Model number: Agilent N2216A

Software version:

Serial number:

Options:

Date the problem was first encountered:

Circumstances in which the problem was encountered:

Can you reproduce the problem?

What effect does this problem have on you?

United States Test and Measurement Call Center
(800) 452-4844 (Toll free in US)

Canada (905) 206-4725

Europe (31 20) 547 9900

Japan Measurement Assistance Center
(81) 426 56 7832
(81) 426 56 7840 (FAX)

Latin America (305) 267 4245
(305) 267 4288 (FAX)

Australia/New Zealand 1 800 629 485 (Australia)
0800 738 378 (New Zealand)

Asia-Pacific (852) 2599 7777
(852) 2506 9285 (FAX)

324

About this edition

July 2000: First Edition.

